x uchun yechish
x=7
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-14x+49=0
Ikki tarafini 2 ga bo‘ling.
a+b=-14 ab=1\times 49=49
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx+49 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-49 -7,-7
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 49-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-49=-50 -7-7=-14
Har bir juftlik yigʻindisini hisoblang.
a=-7 b=-7
Yechim – -14 yigʻindisini beruvchi juftlik.
\left(x^{2}-7x\right)+\left(-7x+49\right)
x^{2}-14x+49 ni \left(x^{2}-7x\right)+\left(-7x+49\right) sifatida qaytadan yozish.
x\left(x-7\right)-7\left(x-7\right)
Birinchi guruhda x ni va ikkinchi guruhda -7 ni faktordan chiqaring.
\left(x-7\right)\left(x-7\right)
Distributiv funktsiyasidan foydalangan holda x-7 umumiy terminini chiqaring.
\left(x-7\right)^{2}
Binom kvadrat sifatid qayta yozish.
x=7
Tenglamani yechish uchun x-7=0 ni yeching.
2x^{2}-28x+98=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 98}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -28 ni b va 98 ni c bilan almashtiring.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 98}}{2\times 2}
-28 kvadratini chiqarish.
x=\frac{-\left(-28\right)±\sqrt{784-8\times 98}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{784-784}}{2\times 2}
-8 ni 98 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{0}}{2\times 2}
784 ni -784 ga qo'shish.
x=-\frac{-28}{2\times 2}
0 ning kvadrat ildizini chiqarish.
x=\frac{28}{2\times 2}
-28 ning teskarisi 28 ga teng.
x=\frac{28}{4}
2 ni 2 marotabaga ko'paytirish.
x=7
28 ni 4 ga bo'lish.
2x^{2}-28x+98=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-28x+98-98=-98
Tenglamaning ikkala tarafidan 98 ni ayirish.
2x^{2}-28x=-98
O‘zidan 98 ayirilsa 0 qoladi.
\frac{2x^{2}-28x}{2}=-\frac{98}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{28}{2}\right)x=-\frac{98}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-14x=-\frac{98}{2}
-28 ni 2 ga bo'lish.
x^{2}-14x=-49
-98 ni 2 ga bo'lish.
x^{2}-14x+\left(-7\right)^{2}=-49+\left(-7\right)^{2}
-14 ni bo‘lish, x shartining koeffitsienti, 2 ga -7 olish uchun. Keyin, -7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-14x+49=-49+49
-7 kvadratini chiqarish.
x^{2}-14x+49=0
-49 ni 49 ga qo'shish.
\left(x-7\right)^{2}=0
x^{2}-14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-7\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-7=0 x-7=0
Qisqartirish.
x=7 x=7
7 ni tenglamaning ikkala tarafiga qo'shish.
x=7
Tenglama yechildi. Yechimlar bir xil.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}