Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-28x+171=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 171}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -28 ni b va 171 ni c bilan almashtiring.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 171}}{2\times 2}
-28 kvadratini chiqarish.
x=\frac{-\left(-28\right)±\sqrt{784-8\times 171}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{784-1368}}{2\times 2}
-8 ni 171 marotabaga ko'paytirish.
x=\frac{-\left(-28\right)±\sqrt{-584}}{2\times 2}
784 ni -1368 ga qo'shish.
x=\frac{-\left(-28\right)±2\sqrt{146}i}{2\times 2}
-584 ning kvadrat ildizini chiqarish.
x=\frac{28±2\sqrt{146}i}{2\times 2}
-28 ning teskarisi 28 ga teng.
x=\frac{28±2\sqrt{146}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{28+2\sqrt{146}i}{4}
x=\frac{28±2\sqrt{146}i}{4} tenglamasini yeching, bunda ± musbat. 28 ni 2i\sqrt{146} ga qo'shish.
x=\frac{\sqrt{146}i}{2}+7
28+2i\sqrt{146} ni 4 ga bo'lish.
x=\frac{-2\sqrt{146}i+28}{4}
x=\frac{28±2\sqrt{146}i}{4} tenglamasini yeching, bunda ± manfiy. 28 dan 2i\sqrt{146} ni ayirish.
x=-\frac{\sqrt{146}i}{2}+7
28-2i\sqrt{146} ni 4 ga bo'lish.
x=\frac{\sqrt{146}i}{2}+7 x=-\frac{\sqrt{146}i}{2}+7
Tenglama yechildi.
2x^{2}-28x+171=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-28x+171-171=-171
Tenglamaning ikkala tarafidan 171 ni ayirish.
2x^{2}-28x=-171
O‘zidan 171 ayirilsa 0 qoladi.
\frac{2x^{2}-28x}{2}=-\frac{171}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{28}{2}\right)x=-\frac{171}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-14x=-\frac{171}{2}
-28 ni 2 ga bo'lish.
x^{2}-14x+\left(-7\right)^{2}=-\frac{171}{2}+\left(-7\right)^{2}
-14 ni bo‘lish, x shartining koeffitsienti, 2 ga -7 olish uchun. Keyin, -7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-14x+49=-\frac{171}{2}+49
-7 kvadratini chiqarish.
x^{2}-14x+49=-\frac{73}{2}
-\frac{171}{2} ni 49 ga qo'shish.
\left(x-7\right)^{2}=-\frac{73}{2}
x^{2}-14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-7\right)^{2}}=\sqrt{-\frac{73}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-7=\frac{\sqrt{146}i}{2} x-7=-\frac{\sqrt{146}i}{2}
Qisqartirish.
x=\frac{\sqrt{146}i}{2}+7 x=-\frac{\sqrt{146}i}{2}+7
7 ni tenglamaning ikkala tarafiga qo'shish.