Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-18x+20=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 20}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 20}}{2\times 2}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-8\times 20}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{324-160}}{2\times 2}
-8 ni 20 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{164}}{2\times 2}
324 ni -160 ga qo'shish.
x=\frac{-\left(-18\right)±2\sqrt{41}}{2\times 2}
164 ning kvadrat ildizini chiqarish.
x=\frac{18±2\sqrt{41}}{2\times 2}
-18 ning teskarisi 18 ga teng.
x=\frac{18±2\sqrt{41}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{41}+18}{4}
x=\frac{18±2\sqrt{41}}{4} tenglamasini yeching, bunda ± musbat. 18 ni 2\sqrt{41} ga qo'shish.
x=\frac{\sqrt{41}+9}{2}
18+2\sqrt{41} ni 4 ga bo'lish.
x=\frac{18-2\sqrt{41}}{4}
x=\frac{18±2\sqrt{41}}{4} tenglamasini yeching, bunda ± manfiy. 18 dan 2\sqrt{41} ni ayirish.
x=\frac{9-\sqrt{41}}{2}
18-2\sqrt{41} ni 4 ga bo'lish.
2x^{2}-18x+20=2\left(x-\frac{\sqrt{41}+9}{2}\right)\left(x-\frac{9-\sqrt{41}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{9+\sqrt{41}}{2} ga va x_{2} uchun \frac{9-\sqrt{41}}{2} ga bo‘ling.