x uchun yechish
x\in \begin{bmatrix}1,\frac{11}{2}\end{bmatrix}
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-13x+11=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\times 11}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 2 ni, b uchun -13 ni va c uchun 11 ni ayiring.
x=\frac{13±9}{4}
Hisoblarni amalga oshiring.
x=\frac{11}{2} x=1
x=\frac{13±9}{4} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
2\left(x-\frac{11}{2}\right)\left(x-1\right)\leq 0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-\frac{11}{2}\geq 0 x-1\leq 0
Koʻpaytma ≤0 boʻlishi uchun qiymatlardan biri x-\frac{11}{2} va x-1 ≥0 va boshqasi ≤0 boʻlishi kerak. x-\frac{11}{2}\geq 0 va x-1\leq 0 boʻlgandagi holatni koʻrib chiqing.
x\in \emptyset
Bu har qanday x uchun xato.
x-1\geq 0 x-\frac{11}{2}\leq 0
x-\frac{11}{2}\leq 0 va x-1\geq 0 boʻlgandagi holatni koʻrib chiqing.
x\in \begin{bmatrix}1,\frac{11}{2}\end{bmatrix}
Ikkala tengsizlikning mos yechimi – x\in \left[1,\frac{11}{2}\right].
x\in \begin{bmatrix}1,\frac{11}{2}\end{bmatrix}
Oxirgi yechim olingan yechimlarning birlashmasidir.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}