Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-11x=2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
2x^{2}-11x-2=2-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
2x^{2}-11x-2=0
O‘zidan 2 ayirilsa 0 qoladi.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -11 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-2\right)}}{2\times 2}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-2\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121+16}}{2\times 2}
-8 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{137}}{2\times 2}
121 ni 16 ga qo'shish.
x=\frac{11±\sqrt{137}}{2\times 2}
-11 ning teskarisi 11 ga teng.
x=\frac{11±\sqrt{137}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{137}+11}{4}
x=\frac{11±\sqrt{137}}{4} tenglamasini yeching, bunda ± musbat. 11 ni \sqrt{137} ga qo'shish.
x=\frac{11-\sqrt{137}}{4}
x=\frac{11±\sqrt{137}}{4} tenglamasini yeching, bunda ± manfiy. 11 dan \sqrt{137} ni ayirish.
x=\frac{\sqrt{137}+11}{4} x=\frac{11-\sqrt{137}}{4}
Tenglama yechildi.
2x^{2}-11x=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}-11x}{2}=\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{11}{2}x=\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{2}x=1
2 ni 2 ga bo'lish.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=1+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{4} olish uchun. Keyin, -\frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{2}x+\frac{121}{16}=1+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{4} kvadratini chiqarish.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{137}{16}
1 ni \frac{121}{16} ga qo'shish.
\left(x-\frac{11}{4}\right)^{2}=\frac{137}{16}
x^{2}-\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{137}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{4}=\frac{\sqrt{137}}{4} x-\frac{11}{4}=-\frac{\sqrt{137}}{4}
Qisqartirish.
x=\frac{\sqrt{137}+11}{4} x=\frac{11-\sqrt{137}}{4}
\frac{11}{4} ni tenglamaning ikkala tarafiga qo'shish.