x uchun yechish
x = \frac{\sqrt{137} + 11}{4} \approx 5,676174978
x=\frac{11-\sqrt{137}}{4}\approx -0,176174978
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-11x=2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
2x^{2}-11x-2=2-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
2x^{2}-11x-2=0
O‘zidan 2 ayirilsa 0 qoladi.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -11 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-2\right)}}{2\times 2}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-2\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121+16}}{2\times 2}
-8 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{137}}{2\times 2}
121 ni 16 ga qo'shish.
x=\frac{11±\sqrt{137}}{2\times 2}
-11 ning teskarisi 11 ga teng.
x=\frac{11±\sqrt{137}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{137}+11}{4}
x=\frac{11±\sqrt{137}}{4} tenglamasini yeching, bunda ± musbat. 11 ni \sqrt{137} ga qo'shish.
x=\frac{11-\sqrt{137}}{4}
x=\frac{11±\sqrt{137}}{4} tenglamasini yeching, bunda ± manfiy. 11 dan \sqrt{137} ni ayirish.
x=\frac{\sqrt{137}+11}{4} x=\frac{11-\sqrt{137}}{4}
Tenglama yechildi.
2x^{2}-11x=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}-11x}{2}=\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{11}{2}x=\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{2}x=1
2 ni 2 ga bo'lish.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=1+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{4} olish uchun. Keyin, -\frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{2}x+\frac{121}{16}=1+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{4} kvadratini chiqarish.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{137}{16}
1 ni \frac{121}{16} ga qo'shish.
\left(x-\frac{11}{4}\right)^{2}=\frac{137}{16}
x^{2}-\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{137}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{4}=\frac{\sqrt{137}}{4} x-\frac{11}{4}=-\frac{\sqrt{137}}{4}
Qisqartirish.
x=\frac{\sqrt{137}+11}{4} x=\frac{11-\sqrt{137}}{4}
\frac{11}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}