Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-11x+16=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\times 16}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -11 ni b va 16 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\times 16}}{2\times 2}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121-8\times 16}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121-128}}{2\times 2}
-8 ni 16 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{-7}}{2\times 2}
121 ni -128 ga qo'shish.
x=\frac{-\left(-11\right)±\sqrt{7}i}{2\times 2}
-7 ning kvadrat ildizini chiqarish.
x=\frac{11±\sqrt{7}i}{2\times 2}
-11 ning teskarisi 11 ga teng.
x=\frac{11±\sqrt{7}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{11+\sqrt{7}i}{4}
x=\frac{11±\sqrt{7}i}{4} tenglamasini yeching, bunda ± musbat. 11 ni i\sqrt{7} ga qo'shish.
x=\frac{-\sqrt{7}i+11}{4}
x=\frac{11±\sqrt{7}i}{4} tenglamasini yeching, bunda ± manfiy. 11 dan i\sqrt{7} ni ayirish.
x=\frac{11+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+11}{4}
Tenglama yechildi.
2x^{2}-11x+16=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-11x+16-16=-16
Tenglamaning ikkala tarafidan 16 ni ayirish.
2x^{2}-11x=-16
O‘zidan 16 ayirilsa 0 qoladi.
\frac{2x^{2}-11x}{2}=-\frac{16}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{11}{2}x=-\frac{16}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{2}x=-8
-16 ni 2 ga bo'lish.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-8+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{4} olish uchun. Keyin, -\frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-8+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{4} kvadratini chiqarish.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{7}{16}
-8 ni \frac{121}{16} ga qo'shish.
\left(x-\frac{11}{4}\right)^{2}=-\frac{7}{16}
x^{2}-\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{4}=\frac{\sqrt{7}i}{4} x-\frac{11}{4}=-\frac{\sqrt{7}i}{4}
Qisqartirish.
x=\frac{11+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+11}{4}
\frac{11}{4} ni tenglamaning ikkala tarafiga qo'shish.