Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-10x+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 7}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -10 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 7}}{2\times 2}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 7}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100-56}}{2\times 2}
-8 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{44}}{2\times 2}
100 ni -56 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{11}}{2\times 2}
44 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{11}}{2\times 2}
-10 ning teskarisi 10 ga teng.
x=\frac{10±2\sqrt{11}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{11}+10}{4}
x=\frac{10±2\sqrt{11}}{4} tenglamasini yeching, bunda ± musbat. 10 ni 2\sqrt{11} ga qo'shish.
x=\frac{\sqrt{11}+5}{2}
10+2\sqrt{11} ni 4 ga bo'lish.
x=\frac{10-2\sqrt{11}}{4}
x=\frac{10±2\sqrt{11}}{4} tenglamasini yeching, bunda ± manfiy. 10 dan 2\sqrt{11} ni ayirish.
x=\frac{5-\sqrt{11}}{2}
10-2\sqrt{11} ni 4 ga bo'lish.
x=\frac{\sqrt{11}+5}{2} x=\frac{5-\sqrt{11}}{2}
Tenglama yechildi.
2x^{2}-10x+7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-10x+7-7=-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
2x^{2}-10x=-7
O‘zidan 7 ayirilsa 0 qoladi.
\frac{2x^{2}-10x}{2}=-\frac{7}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{10}{2}\right)x=-\frac{7}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-5x=-\frac{7}{2}
-10 ni 2 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{7}{2}+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-\frac{7}{2}+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=\frac{11}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{2} ni \frac{25}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{2}\right)^{2}=\frac{11}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{11}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{11}}{2} x-\frac{5}{2}=-\frac{\sqrt{11}}{2}
Qisqartirish.
x=\frac{\sqrt{11}+5}{2} x=\frac{5-\sqrt{11}}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.