Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-10x+7=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 7}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 7}}{2\times 2}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 7}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100-56}}{2\times 2}
-8 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{44}}{2\times 2}
100 ni -56 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{11}}{2\times 2}
44 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{11}}{2\times 2}
-10 ning teskarisi 10 ga teng.
x=\frac{10±2\sqrt{11}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{11}+10}{4}
x=\frac{10±2\sqrt{11}}{4} tenglamasini yeching, bunda ± musbat. 10 ni 2\sqrt{11} ga qo'shish.
x=\frac{\sqrt{11}+5}{2}
10+2\sqrt{11} ni 4 ga bo'lish.
x=\frac{10-2\sqrt{11}}{4}
x=\frac{10±2\sqrt{11}}{4} tenglamasini yeching, bunda ± manfiy. 10 dan 2\sqrt{11} ni ayirish.
x=\frac{5-\sqrt{11}}{2}
10-2\sqrt{11} ni 4 ga bo'lish.
2x^{2}-10x+7=2\left(x-\frac{\sqrt{11}+5}{2}\right)\left(x-\frac{5-\sqrt{11}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{5+\sqrt{11}}{2} ga va x_{2} uchun \frac{5-\sqrt{11}}{2} ga bo‘ling.