x uchun yechish (complex solution)
x=\frac{\sqrt{335}i}{40}+\frac{3}{8}\approx 0,375+0,45757513i
x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}\approx 0,375-0,45757513i
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
2 x ^ { 2 } - \frac { 3 } { 2 } x + \frac { 7 } { 10 } = 0
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-\frac{3}{2}x+\frac{7}{10}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times 2\times \frac{7}{10}}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -\frac{3}{2} ni b va \frac{7}{10} ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times 2\times \frac{7}{10}}}{2\times 2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-8\times \frac{7}{10}}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-\frac{28}{5}}}{2\times 2}
-8 ni \frac{7}{10} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{-\frac{67}{20}}}{2\times 2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{4} ni -\frac{28}{5} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{335}i}{10}}{2\times 2}
-\frac{67}{20} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{2\times 2}
-\frac{3}{2} ning teskarisi \frac{3}{2} ga teng.
x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\frac{\sqrt{335}i}{10}+\frac{3}{2}}{4}
x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4} tenglamasini yeching, bunda ± musbat. \frac{3}{2} ni \frac{i\sqrt{335}}{10} ga qo'shish.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8}
\frac{3}{2}+\frac{i\sqrt{335}}{10} ni 4 ga bo'lish.
x=\frac{-\frac{\sqrt{335}i}{10}+\frac{3}{2}}{4}
x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4} tenglamasini yeching, bunda ± manfiy. \frac{3}{2} dan \frac{i\sqrt{335}}{10} ni ayirish.
x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
\frac{3}{2}-\frac{i\sqrt{335}}{10} ni 4 ga bo'lish.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8} x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
Tenglama yechildi.
2x^{2}-\frac{3}{2}x+\frac{7}{10}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-\frac{3}{2}x+\frac{7}{10}-\frac{7}{10}=-\frac{7}{10}
Tenglamaning ikkala tarafidan \frac{7}{10} ni ayirish.
2x^{2}-\frac{3}{2}x=-\frac{7}{10}
O‘zidan \frac{7}{10} ayirilsa 0 qoladi.
\frac{2x^{2}-\frac{3}{2}x}{2}=-\frac{\frac{7}{10}}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{\frac{3}{2}}{2}\right)x=-\frac{\frac{7}{10}}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{4}x=-\frac{\frac{7}{10}}{2}
-\frac{3}{2} ni 2 ga bo'lish.
x^{2}-\frac{3}{4}x=-\frac{7}{20}
-\frac{7}{10} ni 2 ga bo'lish.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=-\frac{7}{20}+\left(-\frac{3}{8}\right)^{2}
-\frac{3}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{8} olish uchun. Keyin, -\frac{3}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{7}{20}+\frac{9}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{8} kvadratini chiqarish.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{67}{320}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{20} ni \frac{9}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{8}\right)^{2}=-\frac{67}{320}
x^{2}-\frac{3}{4}x+\frac{9}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{-\frac{67}{320}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{8}=\frac{\sqrt{335}i}{40} x-\frac{3}{8}=-\frac{\sqrt{335}i}{40}
Qisqartirish.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8} x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
\frac{3}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}