Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-x=-4
Ikkala tarafdan x ni ayirish.
2x^{2}-x+4=0
4 ni ikki tarafga qo’shing.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times 4}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -1 ni b va 4 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-8\times 4}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-32}}{2\times 2}
-8 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-31}}{2\times 2}
1 ni -32 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{31}i}{2\times 2}
-31 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{31}i}{2\times 2}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{31}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{1+\sqrt{31}i}{4}
x=\frac{1±\sqrt{31}i}{4} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{31} ga qo'shish.
x=\frac{-\sqrt{31}i+1}{4}
x=\frac{1±\sqrt{31}i}{4} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{31} ni ayirish.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
Tenglama yechildi.
2x^{2}-x=-4
Ikkala tarafdan x ni ayirish.
\frac{2x^{2}-x}{2}=-\frac{4}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{1}{2}x=-\frac{4}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=-2
-4 ni 2 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-2+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-2+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{31}{16}
-2 ni \frac{1}{16} ga qo'shish.
\left(x-\frac{1}{4}\right)^{2}=-\frac{31}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{31}i}{4} x-\frac{1}{4}=-\frac{\sqrt{31}i}{4}
Qisqartirish.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.