Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+35x=-1
35x ni ikki tarafga qo’shing.
2x^{2}+35x+1=0
1 ni ikki tarafga qo’shing.
x=\frac{-35±\sqrt{35^{2}-4\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 35 ni b va 1 ni c bilan almashtiring.
x=\frac{-35±\sqrt{1225-4\times 2}}{2\times 2}
35 kvadratini chiqarish.
x=\frac{-35±\sqrt{1225-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-35±\sqrt{1217}}{2\times 2}
1225 ni -8 ga qo'shish.
x=\frac{-35±\sqrt{1217}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{1217}-35}{4}
x=\frac{-35±\sqrt{1217}}{4} tenglamasini yeching, bunda ± musbat. -35 ni \sqrt{1217} ga qo'shish.
x=\frac{-\sqrt{1217}-35}{4}
x=\frac{-35±\sqrt{1217}}{4} tenglamasini yeching, bunda ± manfiy. -35 dan \sqrt{1217} ni ayirish.
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
Tenglama yechildi.
2x^{2}+35x=-1
35x ni ikki tarafga qo’shing.
\frac{2x^{2}+35x}{2}=-\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{35}{2}x=-\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{35}{2}x+\left(\frac{35}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{35}{4}\right)^{2}
\frac{35}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{35}{4} olish uchun. Keyin, \frac{35}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=-\frac{1}{2}+\frac{1225}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{35}{4} kvadratini chiqarish.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=\frac{1217}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{2} ni \frac{1225}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{35}{4}\right)^{2}=\frac{1217}{16}
x^{2}+\frac{35}{2}x+\frac{1225}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{35}{4}\right)^{2}}=\sqrt{\frac{1217}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{35}{4}=\frac{\sqrt{1217}}{4} x+\frac{35}{4}=-\frac{\sqrt{1217}}{4}
Qisqartirish.
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
Tenglamaning ikkala tarafidan \frac{35}{4} ni ayirish.