Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(2x+1\right)=0
x omili.
x=0 x=-\frac{1}{2}
Tenglamani yechish uchun x=0 va 2x+1=0 ni yeching.
2x^{2}+x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 1 ni b va 0 ni c bilan almashtiring.
x=\frac{-1±1}{2\times 2}
1^{2} ning kvadrat ildizini chiqarish.
x=\frac{-1±1}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{0}{4}
x=\frac{-1±1}{4} tenglamasini yeching, bunda ± musbat. -1 ni 1 ga qo'shish.
x=0
0 ni 4 ga bo'lish.
x=-\frac{2}{4}
x=\frac{-1±1}{4} tenglamasini yeching, bunda ± manfiy. -1 dan 1 ni ayirish.
x=-\frac{1}{2}
\frac{-2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{1}{2}
Tenglama yechildi.
2x^{2}+x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}+x}{2}=\frac{0}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{1}{2}x=\frac{0}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{2}x=0
0 ni 2 ga bo'lish.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Qisqartirish.
x=0 x=-\frac{1}{2}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.