x uchun yechish (complex solution)
x=\frac{\sqrt{2}i}{2}-2\approx -2+0,707106781i
x=-\frac{\sqrt{2}i}{2}-2\approx -2-0,707106781i
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+8x+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 9}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 8 ni b va 9 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 2\times 9}}{2\times 2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-8\times 9}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64-72}}{2\times 2}
-8 ni 9 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{-8}}{2\times 2}
64 ni -72 ga qo'shish.
x=\frac{-8±2\sqrt{2}i}{2\times 2}
-8 ning kvadrat ildizini chiqarish.
x=\frac{-8±2\sqrt{2}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{-8+2\sqrt{2}i}{4}
x=\frac{-8±2\sqrt{2}i}{4} tenglamasini yeching, bunda ± musbat. -8 ni 2i\sqrt{2} ga qo'shish.
x=\frac{\sqrt{2}i}{2}-2
-8+2i\sqrt{2} ni 4 ga bo'lish.
x=\frac{-2\sqrt{2}i-8}{4}
x=\frac{-8±2\sqrt{2}i}{4} tenglamasini yeching, bunda ± manfiy. -8 dan 2i\sqrt{2} ni ayirish.
x=-\frac{\sqrt{2}i}{2}-2
-8-2i\sqrt{2} ni 4 ga bo'lish.
x=\frac{\sqrt{2}i}{2}-2 x=-\frac{\sqrt{2}i}{2}-2
Tenglama yechildi.
2x^{2}+8x+9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+8x+9-9=-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
2x^{2}+8x=-9
O‘zidan 9 ayirilsa 0 qoladi.
\frac{2x^{2}+8x}{2}=-\frac{9}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{8}{2}x=-\frac{9}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+4x=-\frac{9}{2}
8 ni 2 ga bo'lish.
x^{2}+4x+2^{2}=-\frac{9}{2}+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=-\frac{9}{2}+4
2 kvadratini chiqarish.
x^{2}+4x+4=-\frac{1}{2}
-\frac{9}{2} ni 4 ga qo'shish.
\left(x+2\right)^{2}=-\frac{1}{2}
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-\frac{1}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\frac{\sqrt{2}i}{2} x+2=-\frac{\sqrt{2}i}{2}
Qisqartirish.
x=\frac{\sqrt{2}i}{2}-2 x=-\frac{\sqrt{2}i}{2}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}