Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+8x+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 9}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 8 ni b va 9 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 2\times 9}}{2\times 2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-8\times 9}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64-72}}{2\times 2}
-8 ni 9 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{-8}}{2\times 2}
64 ni -72 ga qo'shish.
x=\frac{-8±2\sqrt{2}i}{2\times 2}
-8 ning kvadrat ildizini chiqarish.
x=\frac{-8±2\sqrt{2}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{-8+2\sqrt{2}i}{4}
x=\frac{-8±2\sqrt{2}i}{4} tenglamasini yeching, bunda ± musbat. -8 ni 2i\sqrt{2} ga qo'shish.
x=\frac{\sqrt{2}i}{2}-2
-8+2i\sqrt{2} ni 4 ga bo'lish.
x=\frac{-2\sqrt{2}i-8}{4}
x=\frac{-8±2\sqrt{2}i}{4} tenglamasini yeching, bunda ± manfiy. -8 dan 2i\sqrt{2} ni ayirish.
x=-\frac{\sqrt{2}i}{2}-2
-8-2i\sqrt{2} ni 4 ga bo'lish.
x=\frac{\sqrt{2}i}{2}-2 x=-\frac{\sqrt{2}i}{2}-2
Tenglama yechildi.
2x^{2}+8x+9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+8x+9-9=-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
2x^{2}+8x=-9
O‘zidan 9 ayirilsa 0 qoladi.
\frac{2x^{2}+8x}{2}=-\frac{9}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{8}{2}x=-\frac{9}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+4x=-\frac{9}{2}
8 ni 2 ga bo'lish.
x^{2}+4x+2^{2}=-\frac{9}{2}+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=-\frac{9}{2}+4
2 kvadratini chiqarish.
x^{2}+4x+4=-\frac{1}{2}
-\frac{9}{2} ni 4 ga qo'shish.
\left(x+2\right)^{2}=-\frac{1}{2}
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-\frac{1}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=\frac{\sqrt{2}i}{2} x+2=-\frac{\sqrt{2}i}{2}
Qisqartirish.
x=\frac{\sqrt{2}i}{2}-2 x=-\frac{\sqrt{2}i}{2}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.