Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}=7-8
Ikkala tarafdan 8 ni ayirish.
2x^{2}=-1
-1 olish uchun 7 dan 8 ni ayirish.
x^{2}=-\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x=\frac{\sqrt{2}i}{2} x=-\frac{\sqrt{2}i}{2}
Tenglama yechildi.
2x^{2}+8-7=0
Ikkala tarafdan 7 ni ayirish.
2x^{2}+1=0
1 olish uchun 8 dan 7 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va 1 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{2}i}{2\times 2}
-8 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{2}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{2}i}{2}
x=\frac{0±2\sqrt{2}i}{4} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{2}i}{2}
x=\frac{0±2\sqrt{2}i}{4} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{2}i}{2} x=-\frac{\sqrt{2}i}{2}
Tenglama yechildi.