Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(2x+7\right)
x omili.
2x^{2}+7x=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-7±\sqrt{7^{2}}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±7}{2\times 2}
7^{2} ning kvadrat ildizini chiqarish.
x=\frac{-7±7}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{0}{4}
x=\frac{-7±7}{4} tenglamasini yeching, bunda ± musbat. -7 ni 7 ga qo'shish.
x=0
0 ni 4 ga bo'lish.
x=-\frac{14}{4}
x=\frac{-7±7}{4} tenglamasini yeching, bunda ± manfiy. -7 dan 7 ni ayirish.
x=-\frac{7}{2}
\frac{-14}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
2x^{2}+7x=2x\left(x-\left(-\frac{7}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 0 ga va x_{2} uchun -\frac{7}{2} ga bo‘ling.
2x^{2}+7x=2x\left(x+\frac{7}{2}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
2x^{2}+7x=2x\times \frac{2x+7}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{2} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
2x^{2}+7x=x\left(2x+7\right)
2 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.