Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+6x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 6 ni b va -1 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 2\left(-1\right)}}{2\times 2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-8\left(-1\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+8}}{2\times 2}
-8 ni -1 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{44}}{2\times 2}
36 ni 8 ga qo'shish.
x=\frac{-6±2\sqrt{11}}{2\times 2}
44 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{11}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{11}-6}{4}
x=\frac{-6±2\sqrt{11}}{4} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{11} ga qo'shish.
x=\frac{\sqrt{11}-3}{2}
-6+2\sqrt{11} ni 4 ga bo'lish.
x=\frac{-2\sqrt{11}-6}{4}
x=\frac{-6±2\sqrt{11}}{4} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{11} ni ayirish.
x=\frac{-\sqrt{11}-3}{2}
-6-2\sqrt{11} ni 4 ga bo'lish.
x=\frac{\sqrt{11}-3}{2} x=\frac{-\sqrt{11}-3}{2}
Tenglama yechildi.
2x^{2}+6x-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+6x-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}+6x=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
2x^{2}+6x=1
0 dan -1 ni ayirish.
\frac{2x^{2}+6x}{2}=\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{6}{2}x=\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{1}{2}
6 ni 2 ga bo'lish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{1}{2}+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=\frac{1}{2}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{11}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{2}\right)^{2}=\frac{11}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{11}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{11}}{2} x+\frac{3}{2}=-\frac{\sqrt{11}}{2}
Qisqartirish.
x=\frac{\sqrt{11}-3}{2} x=\frac{-\sqrt{11}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.