Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}=-5
Ikkala tarafdan 5 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=-\frac{5}{2}
Ikki tarafini 2 ga bo‘ling.
x=\frac{\sqrt{10}i}{2} x=-\frac{\sqrt{10}i}{2}
Tenglama yechildi.
2x^{2}+5=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 5}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va 5 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\times 5}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\times 5}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-40}}{2\times 2}
-8 ni 5 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{10}i}{2\times 2}
-40 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{10}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{10}i}{2}
x=\frac{0±2\sqrt{10}i}{4} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{10}i}{2}
x=\frac{0±2\sqrt{10}i}{4} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{10}i}{2} x=-\frac{\sqrt{10}i}{2}
Tenglama yechildi.