Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+4x-20=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-20\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{16-4\times 2\left(-20\right)}}{2\times 2}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-8\left(-20\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+160}}{2\times 2}
-8 ni -20 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{176}}{2\times 2}
16 ni 160 ga qo'shish.
x=\frac{-4±4\sqrt{11}}{2\times 2}
176 ning kvadrat ildizini chiqarish.
x=\frac{-4±4\sqrt{11}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4\sqrt{11}-4}{4}
x=\frac{-4±4\sqrt{11}}{4} tenglamasini yeching, bunda ± musbat. -4 ni 4\sqrt{11} ga qo'shish.
x=\sqrt{11}-1
-4+4\sqrt{11} ni 4 ga bo'lish.
x=\frac{-4\sqrt{11}-4}{4}
x=\frac{-4±4\sqrt{11}}{4} tenglamasini yeching, bunda ± manfiy. -4 dan 4\sqrt{11} ni ayirish.
x=-\sqrt{11}-1
-4-4\sqrt{11} ni 4 ga bo'lish.
2x^{2}+4x-20=2\left(x-\left(\sqrt{11}-1\right)\right)\left(x-\left(-\sqrt{11}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -1+\sqrt{11} ga va x_{2} uchun -1-\sqrt{11} ga bo‘ling.