Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(2x+3-5\right)=0
x omili.
x=0 x=1
Tenglamani yechish uchun x=0 va 2x-2=0 ni yeching.
2x^{2}-2x=0
-2x ni olish uchun 3x va -5x ni birlashtirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -2 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±2}{2\times 2}
\left(-2\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{2±2}{2\times 2}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4}{4}
x=\frac{2±2}{4} tenglamasini yeching, bunda ± musbat. 2 ni 2 ga qo'shish.
x=1
4 ni 4 ga bo'lish.
x=\frac{0}{4}
x=\frac{2±2}{4} tenglamasini yeching, bunda ± manfiy. 2 dan 2 ni ayirish.
x=0
0 ni 4 ga bo'lish.
x=1 x=0
Tenglama yechildi.
2x^{2}-2x=0
-2x ni olish uchun 3x va -5x ni birlashtirish.
\frac{2x^{2}-2x}{2}=\frac{0}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{0}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{0}{2}
-2 ni 2 ga bo'lish.
x^{2}-x=0
0 ni 2 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
x=1 x=0
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.