x uchun yechish (complex solution)
x=-\frac{\sqrt{6}i}{2}\approx -0-1,224744871i
x=\frac{\sqrt{6}i}{2}\approx 1,224744871i
Grafik
Viktorina
Polynomial
2 x ^ { 2 } + 3 = 0
Baham ko'rish
Klipbordga nusxa olish
2x^{2}=-3
Ikkala tarafdan 3 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=-\frac{3}{2}
Ikki tarafini 2 ga bo‘ling.
x=\frac{\sqrt{6}i}{2} x=-\frac{\sqrt{6}i}{2}
Tenglama yechildi.
2x^{2}+3=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 3}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va 3 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\times 3}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\times 3}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-24}}{2\times 2}
-8 ni 3 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{6}i}{2\times 2}
-24 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{6}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{6}i}{2}
x=\frac{0±2\sqrt{6}i}{4} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{6}i}{2}
x=\frac{0±2\sqrt{6}i}{4} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{6}i}{2} x=-\frac{\sqrt{6}i}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}