x uchun yechish (complex solution)
x=-7+5i
x=-7-5i
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+28x+148=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-28±\sqrt{28^{2}-4\times 2\times 148}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 28 ni b va 148 ni c bilan almashtiring.
x=\frac{-28±\sqrt{784-4\times 2\times 148}}{2\times 2}
28 kvadratini chiqarish.
x=\frac{-28±\sqrt{784-8\times 148}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-28±\sqrt{784-1184}}{2\times 2}
-8 ni 148 marotabaga ko'paytirish.
x=\frac{-28±\sqrt{-400}}{2\times 2}
784 ni -1184 ga qo'shish.
x=\frac{-28±20i}{2\times 2}
-400 ning kvadrat ildizini chiqarish.
x=\frac{-28±20i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{-28+20i}{4}
x=\frac{-28±20i}{4} tenglamasini yeching, bunda ± musbat. -28 ni 20i ga qo'shish.
x=-7+5i
-28+20i ni 4 ga bo'lish.
x=\frac{-28-20i}{4}
x=\frac{-28±20i}{4} tenglamasini yeching, bunda ± manfiy. -28 dan 20i ni ayirish.
x=-7-5i
-28-20i ni 4 ga bo'lish.
x=-7+5i x=-7-5i
Tenglama yechildi.
2x^{2}+28x+148=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+28x+148-148=-148
Tenglamaning ikkala tarafidan 148 ni ayirish.
2x^{2}+28x=-148
O‘zidan 148 ayirilsa 0 qoladi.
\frac{2x^{2}+28x}{2}=-\frac{148}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{28}{2}x=-\frac{148}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+14x=-\frac{148}{2}
28 ni 2 ga bo'lish.
x^{2}+14x=-74
-148 ni 2 ga bo'lish.
x^{2}+14x+7^{2}=-74+7^{2}
14 ni bo‘lish, x shartining koeffitsienti, 2 ga 7 olish uchun. Keyin, 7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+14x+49=-74+49
7 kvadratini chiqarish.
x^{2}+14x+49=-25
-74 ni 49 ga qo'shish.
\left(x+7\right)^{2}=-25
x^{2}+14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+7\right)^{2}}=\sqrt{-25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+7=5i x+7=-5i
Qisqartirish.
x=-7+5i x=-7-5i
Tenglamaning ikkala tarafidan 7 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}