Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+10x+1-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
x^{2}+10x+1=0
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x=\frac{-10±\sqrt{10^{2}-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 10 ni b va 1 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4}}{2}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{96}}{2}
100 ni -4 ga qo'shish.
x=\frac{-10±4\sqrt{6}}{2}
96 ning kvadrat ildizini chiqarish.
x=\frac{4\sqrt{6}-10}{2}
x=\frac{-10±4\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. -10 ni 4\sqrt{6} ga qo'shish.
x=2\sqrt{6}-5
-10+4\sqrt{6} ni 2 ga bo'lish.
x=\frac{-4\sqrt{6}-10}{2}
x=\frac{-10±4\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 4\sqrt{6} ni ayirish.
x=-2\sqrt{6}-5
-10-4\sqrt{6} ni 2 ga bo'lish.
x=2\sqrt{6}-5 x=-2\sqrt{6}-5
Tenglama yechildi.
2x^{2}+10x+1-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
x^{2}+10x+1=0
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}+10x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}+10x+5^{2}=-1+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=-1+25
5 kvadratini chiqarish.
x^{2}+10x+25=24
-1 ni 25 ga qo'shish.
\left(x+5\right)^{2}=24
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{24}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=2\sqrt{6} x+5=-2\sqrt{6}
Qisqartirish.
x=2\sqrt{6}-5 x=-2\sqrt{6}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.