x, y uchun yechish
x=-1
y=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x+y=1,x-y=-4
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
2x+y=1
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
2x=-y+1
Tenglamaning ikkala tarafidan y ni ayirish.
x=\frac{1}{2}\left(-y+1\right)
Ikki tarafini 2 ga bo‘ling.
x=-\frac{1}{2}y+\frac{1}{2}
\frac{1}{2} ni -y+1 marotabaga ko'paytirish.
-\frac{1}{2}y+\frac{1}{2}-y=-4
\frac{-y+1}{2} ni x uchun boshqa tenglamada almashtirish, x-y=-4.
-\frac{3}{2}y+\frac{1}{2}=-4
-\frac{y}{2} ni -y ga qo'shish.
-\frac{3}{2}y=-\frac{9}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
y=3
Tenglamaning ikki tarafini -\frac{3}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=-\frac{1}{2}\times 3+\frac{1}{2}
3 ni y uchun x=-\frac{1}{2}y+\frac{1}{2} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{-3+1}{2}
-\frac{1}{2} ni 3 marotabaga ko'paytirish.
x=-1
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni -\frac{3}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-1,y=3
Tizim hal qilindi.
2x+y=1,x-y=-4
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-1}&-\frac{1}{2\left(-1\right)-1}\\-\frac{1}{2\left(-1\right)-1}&\frac{2}{2\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}+\frac{1}{3}\left(-4\right)\\\frac{1}{3}-\frac{2}{3}\left(-4\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-1,y=3
x va y matritsa elementlarini chiqarib olish.
2x+y=1,x-y=-4
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
2x+y=1,2x+2\left(-1\right)y=2\left(-4\right)
2x va x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 1 ga va ikkinchining har bir tarafidagi barcha shartlarni 2 ga ko'paytiring.
2x+y=1,2x-2y=-8
Qisqartirish.
2x-2x+y+2y=1+8
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 2x+y=1 dan 2x-2y=-8 ni ayirish.
y+2y=1+8
2x ni -2x ga qo'shish. 2x va -2x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
3y=1+8
y ni 2y ga qo'shish.
3y=9
1 ni 8 ga qo'shish.
y=3
Ikki tarafini 3 ga bo‘ling.
x-3=-4
3 ni y uchun x-y=-4 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-1
3 ni tenglamaning ikkala tarafiga qo'shish.
x=-1,y=3
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}