x, y uchun yechish
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
y=1
Grafik
Viktorina
Simultaneous Equation
5xshash muammolar:
2 x + 3 y = 6 \quad \text { and } \quad 6 x - 5 y = 4
Baham ko'rish
Klipbordga nusxa olish
2x+3y=6,6x-5y=4
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
2x+3y=6
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
2x=-3y+6
Tenglamaning ikkala tarafidan 3y ni ayirish.
x=\frac{1}{2}\left(-3y+6\right)
Ikki tarafini 2 ga bo‘ling.
x=-\frac{3}{2}y+3
\frac{1}{2} ni -3y+6 marotabaga ko'paytirish.
6\left(-\frac{3}{2}y+3\right)-5y=4
-\frac{3y}{2}+3 ni x uchun boshqa tenglamada almashtirish, 6x-5y=4.
-9y+18-5y=4
6 ni -\frac{3y}{2}+3 marotabaga ko'paytirish.
-14y+18=4
-9y ni -5y ga qo'shish.
-14y=-14
Tenglamaning ikkala tarafidan 18 ni ayirish.
y=1
Ikki tarafini -14 ga bo‘ling.
x=-\frac{3}{2}+3
1 ni y uchun x=-\frac{3}{2}y+3 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{3}{2}
3 ni -\frac{3}{2} ga qo'shish.
x=\frac{3}{2},y=1
Tizim hal qilindi.
2x+3y=6,6x-5y=4
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
\left(\begin{matrix}2&3\\6&-5\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-3\times 6}&-\frac{3}{2\left(-5\right)-3\times 6}\\-\frac{6}{2\left(-5\right)-3\times 6}&\frac{2}{2\left(-5\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{28}&\frac{3}{28}\\\frac{3}{14}&-\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{28}\times 6+\frac{3}{28}\times 4\\\frac{3}{14}\times 6-\frac{1}{14}\times 4\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=\frac{3}{2},y=1
x va y matritsa elementlarini chiqarib olish.
2x+3y=6,6x-5y=4
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
6\times 2x+6\times 3y=6\times 6,2\times 6x+2\left(-5\right)y=2\times 4
2x va 6x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 6 ga va ikkinchining har bir tarafidagi barcha shartlarni 2 ga ko'paytiring.
12x+18y=36,12x-10y=8
Qisqartirish.
12x-12x+18y+10y=36-8
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 12x+18y=36 dan 12x-10y=8 ni ayirish.
18y+10y=36-8
12x ni -12x ga qo'shish. 12x va -12x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
28y=36-8
18y ni 10y ga qo'shish.
28y=28
36 ni -8 ga qo'shish.
y=1
Ikki tarafini 28 ga bo‘ling.
6x-5=4
1 ni y uchun 6x-5y=4 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
6x=9
5 ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{3}{2}
Ikki tarafini 6 ga bo‘ling.
x=\frac{3}{2},y=1
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}