v uchun yechish
v=7
v=0
Baham ko'rish
Klipbordga nusxa olish
2v^{2}-14v=5v\left(v-7\right)
2v ga v-7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2v^{2}-14v=5v^{2}-35v
5v ga v-7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2v^{2}-14v-5v^{2}=-35v
Ikkala tarafdan 5v^{2} ni ayirish.
-3v^{2}-14v=-35v
-3v^{2} ni olish uchun 2v^{2} va -5v^{2} ni birlashtirish.
-3v^{2}-14v+35v=0
35v ni ikki tarafga qo’shing.
-3v^{2}+21v=0
21v ni olish uchun -14v va 35v ni birlashtirish.
v\left(-3v+21\right)=0
v omili.
v=0 v=7
Tenglamani yechish uchun v=0 va -3v+21=0 ni yeching.
2v^{2}-14v=5v\left(v-7\right)
2v ga v-7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2v^{2}-14v=5v^{2}-35v
5v ga v-7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2v^{2}-14v-5v^{2}=-35v
Ikkala tarafdan 5v^{2} ni ayirish.
-3v^{2}-14v=-35v
-3v^{2} ni olish uchun 2v^{2} va -5v^{2} ni birlashtirish.
-3v^{2}-14v+35v=0
35v ni ikki tarafga qo’shing.
-3v^{2}+21v=0
21v ni olish uchun -14v va 35v ni birlashtirish.
v=\frac{-21±\sqrt{21^{2}}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 21 ni b va 0 ni c bilan almashtiring.
v=\frac{-21±21}{2\left(-3\right)}
21^{2} ning kvadrat ildizini chiqarish.
v=\frac{-21±21}{-6}
2 ni -3 marotabaga ko'paytirish.
v=\frac{0}{-6}
v=\frac{-21±21}{-6} tenglamasini yeching, bunda ± musbat. -21 ni 21 ga qo'shish.
v=0
0 ni -6 ga bo'lish.
v=-\frac{42}{-6}
v=\frac{-21±21}{-6} tenglamasini yeching, bunda ± manfiy. -21 dan 21 ni ayirish.
v=7
-42 ni -6 ga bo'lish.
v=0 v=7
Tenglama yechildi.
2v^{2}-14v=5v\left(v-7\right)
2v ga v-7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2v^{2}-14v=5v^{2}-35v
5v ga v-7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2v^{2}-14v-5v^{2}=-35v
Ikkala tarafdan 5v^{2} ni ayirish.
-3v^{2}-14v=-35v
-3v^{2} ni olish uchun 2v^{2} va -5v^{2} ni birlashtirish.
-3v^{2}-14v+35v=0
35v ni ikki tarafga qo’shing.
-3v^{2}+21v=0
21v ni olish uchun -14v va 35v ni birlashtirish.
\frac{-3v^{2}+21v}{-3}=\frac{0}{-3}
Ikki tarafini -3 ga bo‘ling.
v^{2}+\frac{21}{-3}v=\frac{0}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
v^{2}-7v=\frac{0}{-3}
21 ni -3 ga bo'lish.
v^{2}-7v=0
0 ni -3 ga bo'lish.
v^{2}-7v+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
v^{2}-7v+\frac{49}{4}=\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
\left(v-\frac{7}{2}\right)^{2}=\frac{49}{4}
v^{2}-7v+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(v-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
v-\frac{7}{2}=\frac{7}{2} v-\frac{7}{2}=-\frac{7}{2}
Qisqartirish.
v=7 v=0
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}