Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2t^{2}-7t-7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -7 ni b va -7 ni c bilan almashtiring.
t=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-7\right)}}{2\times 2}
-7 kvadratini chiqarish.
t=\frac{-\left(-7\right)±\sqrt{49-8\left(-7\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
t=\frac{-\left(-7\right)±\sqrt{49+56}}{2\times 2}
-8 ni -7 marotabaga ko'paytirish.
t=\frac{-\left(-7\right)±\sqrt{105}}{2\times 2}
49 ni 56 ga qo'shish.
t=\frac{7±\sqrt{105}}{2\times 2}
-7 ning teskarisi 7 ga teng.
t=\frac{7±\sqrt{105}}{4}
2 ni 2 marotabaga ko'paytirish.
t=\frac{\sqrt{105}+7}{4}
t=\frac{7±\sqrt{105}}{4} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{105} ga qo'shish.
t=\frac{7-\sqrt{105}}{4}
t=\frac{7±\sqrt{105}}{4} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{105} ni ayirish.
t=\frac{\sqrt{105}+7}{4} t=\frac{7-\sqrt{105}}{4}
Tenglama yechildi.
2t^{2}-7t-7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2t^{2}-7t-7-\left(-7\right)=-\left(-7\right)
7 ni tenglamaning ikkala tarafiga qo'shish.
2t^{2}-7t=-\left(-7\right)
O‘zidan -7 ayirilsa 0 qoladi.
2t^{2}-7t=7
0 dan -7 ni ayirish.
\frac{2t^{2}-7t}{2}=\frac{7}{2}
Ikki tarafini 2 ga bo‘ling.
t^{2}-\frac{7}{2}t=\frac{7}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{7}{2}t+\left(-\frac{7}{4}\right)^{2}=\frac{7}{2}+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{4} olish uchun. Keyin, -\frac{7}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{7}{2}t+\frac{49}{16}=\frac{7}{2}+\frac{49}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{4} kvadratini chiqarish.
t^{2}-\frac{7}{2}t+\frac{49}{16}=\frac{105}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{2} ni \frac{49}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t-\frac{7}{4}\right)^{2}=\frac{105}{16}
t^{2}-\frac{7}{2}t+\frac{49}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{7}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{7}{4}=\frac{\sqrt{105}}{4} t-\frac{7}{4}=-\frac{\sqrt{105}}{4}
Qisqartirish.
t=\frac{\sqrt{105}+7}{4} t=\frac{7-\sqrt{105}}{4}
\frac{7}{4} ni tenglamaning ikkala tarafiga qo'shish.