Asosiy tarkibga oʻtish
s uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2s^{2}+6s+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
s=\frac{-6±\sqrt{6^{2}-4\times 2\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 6 ni b va 2 ni c bilan almashtiring.
s=\frac{-6±\sqrt{36-4\times 2\times 2}}{2\times 2}
6 kvadratini chiqarish.
s=\frac{-6±\sqrt{36-8\times 2}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
s=\frac{-6±\sqrt{36-16}}{2\times 2}
-8 ni 2 marotabaga ko'paytirish.
s=\frac{-6±\sqrt{20}}{2\times 2}
36 ni -16 ga qo'shish.
s=\frac{-6±2\sqrt{5}}{2\times 2}
20 ning kvadrat ildizini chiqarish.
s=\frac{-6±2\sqrt{5}}{4}
2 ni 2 marotabaga ko'paytirish.
s=\frac{2\sqrt{5}-6}{4}
s=\frac{-6±2\sqrt{5}}{4} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{5} ga qo'shish.
s=\frac{\sqrt{5}-3}{2}
-6+2\sqrt{5} ni 4 ga bo'lish.
s=\frac{-2\sqrt{5}-6}{4}
s=\frac{-6±2\sqrt{5}}{4} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{5} ni ayirish.
s=\frac{-\sqrt{5}-3}{2}
-6-2\sqrt{5} ni 4 ga bo'lish.
s=\frac{\sqrt{5}-3}{2} s=\frac{-\sqrt{5}-3}{2}
Tenglama yechildi.
2s^{2}+6s+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2s^{2}+6s+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
2s^{2}+6s=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{2s^{2}+6s}{2}=-\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
s^{2}+\frac{6}{2}s=-\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
s^{2}+3s=-\frac{2}{2}
6 ni 2 ga bo'lish.
s^{2}+3s=-1
-2 ni 2 ga bo'lish.
s^{2}+3s+\left(\frac{3}{2}\right)^{2}=-1+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
s^{2}+3s+\frac{9}{4}=-1+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
s^{2}+3s+\frac{9}{4}=\frac{5}{4}
-1 ni \frac{9}{4} ga qo'shish.
\left(s+\frac{3}{2}\right)^{2}=\frac{5}{4}
s^{2}+3s+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(s+\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
s+\frac{3}{2}=\frac{\sqrt{5}}{2} s+\frac{3}{2}=-\frac{\sqrt{5}}{2}
Qisqartirish.
s=\frac{\sqrt{5}-3}{2} s=\frac{-\sqrt{5}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.