Asosiy tarkibga oʻtish
q uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2q^{2}+10q+12-q^{2}=0
Ikkala tarafdan q^{2} ni ayirish.
q^{2}+10q+12=0
q^{2} ni olish uchun 2q^{2} va -q^{2} ni birlashtirish.
q=\frac{-10±\sqrt{10^{2}-4\times 12}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 10 ni b va 12 ni c bilan almashtiring.
q=\frac{-10±\sqrt{100-4\times 12}}{2}
10 kvadratini chiqarish.
q=\frac{-10±\sqrt{100-48}}{2}
-4 ni 12 marotabaga ko'paytirish.
q=\frac{-10±\sqrt{52}}{2}
100 ni -48 ga qo'shish.
q=\frac{-10±2\sqrt{13}}{2}
52 ning kvadrat ildizini chiqarish.
q=\frac{2\sqrt{13}-10}{2}
q=\frac{-10±2\sqrt{13}}{2} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{13} ga qo'shish.
q=\sqrt{13}-5
-10+2\sqrt{13} ni 2 ga bo'lish.
q=\frac{-2\sqrt{13}-10}{2}
q=\frac{-10±2\sqrt{13}}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{13} ni ayirish.
q=-\sqrt{13}-5
-10-2\sqrt{13} ni 2 ga bo'lish.
q=\sqrt{13}-5 q=-\sqrt{13}-5
Tenglama yechildi.
2q^{2}+10q+12-q^{2}=0
Ikkala tarafdan q^{2} ni ayirish.
q^{2}+10q+12=0
q^{2} ni olish uchun 2q^{2} va -q^{2} ni birlashtirish.
q^{2}+10q=-12
Ikkala tarafdan 12 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
q^{2}+10q+5^{2}=-12+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
q^{2}+10q+25=-12+25
5 kvadratini chiqarish.
q^{2}+10q+25=13
-12 ni 25 ga qo'shish.
\left(q+5\right)^{2}=13
q^{2}+10q+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(q+5\right)^{2}}=\sqrt{13}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
q+5=\sqrt{13} q+5=-\sqrt{13}
Qisqartirish.
q=\sqrt{13}-5 q=-\sqrt{13}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.