Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

factor(2p^{2}-100+7p)
-100 olish uchun -94 dan 6 ni ayirish.
2p^{2}+7p-100=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
p=\frac{-7±\sqrt{7^{2}-4\times 2\left(-100\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-7±\sqrt{49-4\times 2\left(-100\right)}}{2\times 2}
7 kvadratini chiqarish.
p=\frac{-7±\sqrt{49-8\left(-100\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
p=\frac{-7±\sqrt{49+800}}{2\times 2}
-8 ni -100 marotabaga ko'paytirish.
p=\frac{-7±\sqrt{849}}{2\times 2}
49 ni 800 ga qo'shish.
p=\frac{-7±\sqrt{849}}{4}
2 ni 2 marotabaga ko'paytirish.
p=\frac{\sqrt{849}-7}{4}
p=\frac{-7±\sqrt{849}}{4} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{849} ga qo'shish.
p=\frac{-\sqrt{849}-7}{4}
p=\frac{-7±\sqrt{849}}{4} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{849} ni ayirish.
2p^{2}+7p-100=2\left(p-\frac{\sqrt{849}-7}{4}\right)\left(p-\frac{-\sqrt{849}-7}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-7+\sqrt{849}}{4} ga va x_{2} uchun \frac{-7-\sqrt{849}}{4} ga bo‘ling.
2p^{2}-100+7p
-100 olish uchun -94 dan 6 ni ayirish.