Asosiy tarkibga oʻtish
p uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2p^{2}+9p-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-9±\sqrt{9^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 9 ni b va -3 ni c bilan almashtiring.
p=\frac{-9±\sqrt{81-4\times 2\left(-3\right)}}{2\times 2}
9 kvadratini chiqarish.
p=\frac{-9±\sqrt{81-8\left(-3\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
p=\frac{-9±\sqrt{81+24}}{2\times 2}
-8 ni -3 marotabaga ko'paytirish.
p=\frac{-9±\sqrt{105}}{2\times 2}
81 ni 24 ga qo'shish.
p=\frac{-9±\sqrt{105}}{4}
2 ni 2 marotabaga ko'paytirish.
p=\frac{\sqrt{105}-9}{4}
p=\frac{-9±\sqrt{105}}{4} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{105} ga qo'shish.
p=\frac{-\sqrt{105}-9}{4}
p=\frac{-9±\sqrt{105}}{4} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{105} ni ayirish.
p=\frac{\sqrt{105}-9}{4} p=\frac{-\sqrt{105}-9}{4}
Tenglama yechildi.
2p^{2}+9p-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2p^{2}+9p-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
2p^{2}+9p=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
2p^{2}+9p=3
0 dan -3 ni ayirish.
\frac{2p^{2}+9p}{2}=\frac{3}{2}
Ikki tarafini 2 ga bo‘ling.
p^{2}+\frac{9}{2}p=\frac{3}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
p^{2}+\frac{9}{2}p+\left(\frac{9}{4}\right)^{2}=\frac{3}{2}+\left(\frac{9}{4}\right)^{2}
\frac{9}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{4} olish uchun. Keyin, \frac{9}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}+\frac{9}{2}p+\frac{81}{16}=\frac{3}{2}+\frac{81}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{4} kvadratini chiqarish.
p^{2}+\frac{9}{2}p+\frac{81}{16}=\frac{105}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{81}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(p+\frac{9}{4}\right)^{2}=\frac{105}{16}
p^{2}+\frac{9}{2}p+\frac{81}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p+\frac{9}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p+\frac{9}{4}=\frac{\sqrt{105}}{4} p+\frac{9}{4}=-\frac{\sqrt{105}}{4}
Qisqartirish.
p=\frac{\sqrt{105}-9}{4} p=\frac{-\sqrt{105}-9}{4}
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.