Asosiy tarkibga oʻtish
p uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2p^{2}+4p-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-4±\sqrt{4^{2}-4\times 2\left(-5\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 4 ni b va -5 ni c bilan almashtiring.
p=\frac{-4±\sqrt{16-4\times 2\left(-5\right)}}{2\times 2}
4 kvadratini chiqarish.
p=\frac{-4±\sqrt{16-8\left(-5\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
p=\frac{-4±\sqrt{16+40}}{2\times 2}
-8 ni -5 marotabaga ko'paytirish.
p=\frac{-4±\sqrt{56}}{2\times 2}
16 ni 40 ga qo'shish.
p=\frac{-4±2\sqrt{14}}{2\times 2}
56 ning kvadrat ildizini chiqarish.
p=\frac{-4±2\sqrt{14}}{4}
2 ni 2 marotabaga ko'paytirish.
p=\frac{2\sqrt{14}-4}{4}
p=\frac{-4±2\sqrt{14}}{4} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{14} ga qo'shish.
p=\frac{\sqrt{14}}{2}-1
-4+2\sqrt{14} ni 4 ga bo'lish.
p=\frac{-2\sqrt{14}-4}{4}
p=\frac{-4±2\sqrt{14}}{4} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{14} ni ayirish.
p=-\frac{\sqrt{14}}{2}-1
-4-2\sqrt{14} ni 4 ga bo'lish.
p=\frac{\sqrt{14}}{2}-1 p=-\frac{\sqrt{14}}{2}-1
Tenglama yechildi.
2p^{2}+4p-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2p^{2}+4p-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
2p^{2}+4p=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
2p^{2}+4p=5
0 dan -5 ni ayirish.
\frac{2p^{2}+4p}{2}=\frac{5}{2}
Ikki tarafini 2 ga bo‘ling.
p^{2}+\frac{4}{2}p=\frac{5}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
p^{2}+2p=\frac{5}{2}
4 ni 2 ga bo'lish.
p^{2}+2p+1^{2}=\frac{5}{2}+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}+2p+1=\frac{5}{2}+1
1 kvadratini chiqarish.
p^{2}+2p+1=\frac{7}{2}
\frac{5}{2} ni 1 ga qo'shish.
\left(p+1\right)^{2}=\frac{7}{2}
p^{2}+2p+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p+1\right)^{2}}=\sqrt{\frac{7}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p+1=\frac{\sqrt{14}}{2} p+1=-\frac{\sqrt{14}}{2}
Qisqartirish.
p=\frac{\sqrt{14}}{2}-1 p=-\frac{\sqrt{14}}{2}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.