n uchun yechish
n = \frac{\sqrt{19} + 3}{2} \approx 3,679449472
n=\frac{3-\sqrt{19}}{2}\approx -0,679449472
Baham ko'rish
Klipbordga nusxa olish
2n^{2}-10n-5+4n=0
4n ni ikki tarafga qo’shing.
2n^{2}-6n-5=0
-6n ni olish uchun -10n va 4n ni birlashtirish.
n=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -6 ni b va -5 ni c bilan almashtiring.
n=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-5\right)}}{2\times 2}
-6 kvadratini chiqarish.
n=\frac{-\left(-6\right)±\sqrt{36-8\left(-5\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
n=\frac{-\left(-6\right)±\sqrt{36+40}}{2\times 2}
-8 ni -5 marotabaga ko'paytirish.
n=\frac{-\left(-6\right)±\sqrt{76}}{2\times 2}
36 ni 40 ga qo'shish.
n=\frac{-\left(-6\right)±2\sqrt{19}}{2\times 2}
76 ning kvadrat ildizini chiqarish.
n=\frac{6±2\sqrt{19}}{2\times 2}
-6 ning teskarisi 6 ga teng.
n=\frac{6±2\sqrt{19}}{4}
2 ni 2 marotabaga ko'paytirish.
n=\frac{2\sqrt{19}+6}{4}
n=\frac{6±2\sqrt{19}}{4} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{19} ga qo'shish.
n=\frac{\sqrt{19}+3}{2}
6+2\sqrt{19} ni 4 ga bo'lish.
n=\frac{6-2\sqrt{19}}{4}
n=\frac{6±2\sqrt{19}}{4} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{19} ni ayirish.
n=\frac{3-\sqrt{19}}{2}
6-2\sqrt{19} ni 4 ga bo'lish.
n=\frac{\sqrt{19}+3}{2} n=\frac{3-\sqrt{19}}{2}
Tenglama yechildi.
2n^{2}-10n-5+4n=0
4n ni ikki tarafga qo’shing.
2n^{2}-6n-5=0
-6n ni olish uchun -10n va 4n ni birlashtirish.
2n^{2}-6n=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{2n^{2}-6n}{2}=\frac{5}{2}
Ikki tarafini 2 ga bo‘ling.
n^{2}+\left(-\frac{6}{2}\right)n=\frac{5}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
n^{2}-3n=\frac{5}{2}
-6 ni 2 ga bo'lish.
n^{2}-3n+\left(-\frac{3}{2}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-3n+\frac{9}{4}=\frac{5}{2}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
n^{2}-3n+\frac{9}{4}=\frac{19}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{2} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n-\frac{3}{2}\right)^{2}=\frac{19}{4}
n^{2}-3n+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{3}{2}\right)^{2}}=\sqrt{\frac{19}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{3}{2}=\frac{\sqrt{19}}{2} n-\frac{3}{2}=-\frac{\sqrt{19}}{2}
Qisqartirish.
n=\frac{\sqrt{19}+3}{2} n=\frac{3-\sqrt{19}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}