Baholash
392+44m-14m^{2}
Omil
-14\left(m-\frac{11-\sqrt{1493}}{7}\right)\left(m-\frac{\sqrt{1493}+11}{7}\right)
Baham ko'rish
Klipbordga nusxa olish
2m-14\left(m^{2}-3m-28\right)
14 ni \frac{1}{m^{2}-3m-28} ga bo'lish 14 ga k'paytirish \frac{1}{m^{2}-3m-28} ga qaytarish.
2m-\left(14m^{2}-42m-392\right)
14 ga m^{2}-3m-28 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2m-14m^{2}+42m+392
14m^{2}-42m-392 teskarisini topish uchun har birining teskarisini toping.
44m-14m^{2}+392
44m ni olish uchun 2m va 42m ni birlashtirish.
factor(2m-14\left(m^{2}-3m-28\right))
14 ni \frac{1}{m^{2}-3m-28} ga bo'lish 14 ga k'paytirish \frac{1}{m^{2}-3m-28} ga qaytarish.
factor(2m-\left(14m^{2}-42m-392\right))
14 ga m^{2}-3m-28 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
factor(2m-14m^{2}+42m+392)
14m^{2}-42m-392 teskarisini topish uchun har birining teskarisini toping.
factor(44m-14m^{2}+392)
44m ni olish uchun 2m va 42m ni birlashtirish.
-14m^{2}+44m+392=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
m=\frac{-44±\sqrt{44^{2}-4\left(-14\right)\times 392}}{2\left(-14\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-44±\sqrt{1936-4\left(-14\right)\times 392}}{2\left(-14\right)}
44 kvadratini chiqarish.
m=\frac{-44±\sqrt{1936+56\times 392}}{2\left(-14\right)}
-4 ni -14 marotabaga ko'paytirish.
m=\frac{-44±\sqrt{1936+21952}}{2\left(-14\right)}
56 ni 392 marotabaga ko'paytirish.
m=\frac{-44±\sqrt{23888}}{2\left(-14\right)}
1936 ni 21952 ga qo'shish.
m=\frac{-44±4\sqrt{1493}}{2\left(-14\right)}
23888 ning kvadrat ildizini chiqarish.
m=\frac{-44±4\sqrt{1493}}{-28}
2 ni -14 marotabaga ko'paytirish.
m=\frac{4\sqrt{1493}-44}{-28}
m=\frac{-44±4\sqrt{1493}}{-28} tenglamasini yeching, bunda ± musbat. -44 ni 4\sqrt{1493} ga qo'shish.
m=\frac{11-\sqrt{1493}}{7}
-44+4\sqrt{1493} ni -28 ga bo'lish.
m=\frac{-4\sqrt{1493}-44}{-28}
m=\frac{-44±4\sqrt{1493}}{-28} tenglamasini yeching, bunda ± manfiy. -44 dan 4\sqrt{1493} ni ayirish.
m=\frac{\sqrt{1493}+11}{7}
-44-4\sqrt{1493} ni -28 ga bo'lish.
-14m^{2}+44m+392=-14\left(m-\frac{11-\sqrt{1493}}{7}\right)\left(m-\frac{\sqrt{1493}+11}{7}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{11-\sqrt{1493}}{7} ga va x_{2} uchun \frac{11+\sqrt{1493}}{7} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}