m uchun yechish
m=\frac{\sqrt{2}}{4}\approx 0,353553391
m=-\frac{\sqrt{2}}{4}\approx -0,353553391
Baham ko'rish
Klipbordga nusxa olish
8m^{2}=1
8m^{2} ni olish uchun 2m^{2} va 6m^{2} ni birlashtirish.
m^{2}=\frac{1}{8}
Ikki tarafini 8 ga bo‘ling.
m=\frac{\sqrt{2}}{4} m=-\frac{\sqrt{2}}{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
8m^{2}=1
8m^{2} ni olish uchun 2m^{2} va 6m^{2} ni birlashtirish.
8m^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
m=\frac{0±\sqrt{0^{2}-4\times 8\left(-1\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 0 ni b va -1 ni c bilan almashtiring.
m=\frac{0±\sqrt{-4\times 8\left(-1\right)}}{2\times 8}
0 kvadratini chiqarish.
m=\frac{0±\sqrt{-32\left(-1\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
m=\frac{0±\sqrt{32}}{2\times 8}
-32 ni -1 marotabaga ko'paytirish.
m=\frac{0±4\sqrt{2}}{2\times 8}
32 ning kvadrat ildizini chiqarish.
m=\frac{0±4\sqrt{2}}{16}
2 ni 8 marotabaga ko'paytirish.
m=\frac{\sqrt{2}}{4}
m=\frac{0±4\sqrt{2}}{16} tenglamasini yeching, bunda ± musbat.
m=-\frac{\sqrt{2}}{4}
m=\frac{0±4\sqrt{2}}{16} tenglamasini yeching, bunda ± manfiy.
m=\frac{\sqrt{2}}{4} m=-\frac{\sqrt{2}}{4}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}