Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8m^{2}=1
8m^{2} ni olish uchun 2m^{2} va 6m^{2} ni birlashtirish.
m^{2}=\frac{1}{8}
Ikki tarafini 8 ga bo‘ling.
m=\frac{\sqrt{2}}{4} m=-\frac{\sqrt{2}}{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
8m^{2}=1
8m^{2} ni olish uchun 2m^{2} va 6m^{2} ni birlashtirish.
8m^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
m=\frac{0±\sqrt{0^{2}-4\times 8\left(-1\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, 0 ni b va -1 ni c bilan almashtiring.
m=\frac{0±\sqrt{-4\times 8\left(-1\right)}}{2\times 8}
0 kvadratini chiqarish.
m=\frac{0±\sqrt{-32\left(-1\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
m=\frac{0±\sqrt{32}}{2\times 8}
-32 ni -1 marotabaga ko'paytirish.
m=\frac{0±4\sqrt{2}}{2\times 8}
32 ning kvadrat ildizini chiqarish.
m=\frac{0±4\sqrt{2}}{16}
2 ni 8 marotabaga ko'paytirish.
m=\frac{\sqrt{2}}{4}
m=\frac{0±4\sqrt{2}}{16} tenglamasini yeching, bunda ± musbat.
m=-\frac{\sqrt{2}}{4}
m=\frac{0±4\sqrt{2}}{16} tenglamasini yeching, bunda ± manfiy.
m=\frac{\sqrt{2}}{4} m=-\frac{\sqrt{2}}{4}
Tenglama yechildi.