Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2m^{2}+17m+22=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
m=\frac{-17±\sqrt{17^{2}-4\times 2\times 22}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-17±\sqrt{289-4\times 2\times 22}}{2\times 2}
17 kvadratini chiqarish.
m=\frac{-17±\sqrt{289-8\times 22}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
m=\frac{-17±\sqrt{289-176}}{2\times 2}
-8 ni 22 marotabaga ko'paytirish.
m=\frac{-17±\sqrt{113}}{2\times 2}
289 ni -176 ga qo'shish.
m=\frac{-17±\sqrt{113}}{4}
2 ni 2 marotabaga ko'paytirish.
m=\frac{\sqrt{113}-17}{4}
m=\frac{-17±\sqrt{113}}{4} tenglamasini yeching, bunda ± musbat. -17 ni \sqrt{113} ga qo'shish.
m=\frac{-\sqrt{113}-17}{4}
m=\frac{-17±\sqrt{113}}{4} tenglamasini yeching, bunda ± manfiy. -17 dan \sqrt{113} ni ayirish.
2m^{2}+17m+22=2\left(m-\frac{\sqrt{113}-17}{4}\right)\left(m-\frac{-\sqrt{113}-17}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-17+\sqrt{113}}{4} ga va x_{2} uchun \frac{-17-\sqrt{113}}{4} ga bo‘ling.