Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2k^{2}+6k-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
k=\frac{-6±\sqrt{6^{2}-4\times 2\left(-2\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 6 ni b va -2 ni c bilan almashtiring.
k=\frac{-6±\sqrt{36-4\times 2\left(-2\right)}}{2\times 2}
6 kvadratini chiqarish.
k=\frac{-6±\sqrt{36-8\left(-2\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
k=\frac{-6±\sqrt{36+16}}{2\times 2}
-8 ni -2 marotabaga ko'paytirish.
k=\frac{-6±\sqrt{52}}{2\times 2}
36 ni 16 ga qo'shish.
k=\frac{-6±2\sqrt{13}}{2\times 2}
52 ning kvadrat ildizini chiqarish.
k=\frac{-6±2\sqrt{13}}{4}
2 ni 2 marotabaga ko'paytirish.
k=\frac{2\sqrt{13}-6}{4}
k=\frac{-6±2\sqrt{13}}{4} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{13} ga qo'shish.
k=\frac{\sqrt{13}-3}{2}
-6+2\sqrt{13} ni 4 ga bo'lish.
k=\frac{-2\sqrt{13}-6}{4}
k=\frac{-6±2\sqrt{13}}{4} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{13} ni ayirish.
k=\frac{-\sqrt{13}-3}{2}
-6-2\sqrt{13} ni 4 ga bo'lish.
k=\frac{\sqrt{13}-3}{2} k=\frac{-\sqrt{13}-3}{2}
Tenglama yechildi.
2k^{2}+6k-2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2k^{2}+6k-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
2k^{2}+6k=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
2k^{2}+6k=2
0 dan -2 ni ayirish.
\frac{2k^{2}+6k}{2}=\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
k^{2}+\frac{6}{2}k=\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
k^{2}+3k=\frac{2}{2}
6 ni 2 ga bo'lish.
k^{2}+3k=1
2 ni 2 ga bo'lish.
k^{2}+3k+\left(\frac{3}{2}\right)^{2}=1+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
k^{2}+3k+\frac{9}{4}=1+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
k^{2}+3k+\frac{9}{4}=\frac{13}{4}
1 ni \frac{9}{4} ga qo'shish.
\left(k+\frac{3}{2}\right)^{2}=\frac{13}{4}
k^{2}+3k+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(k+\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
k+\frac{3}{2}=\frac{\sqrt{13}}{2} k+\frac{3}{2}=-\frac{\sqrt{13}}{2}
Qisqartirish.
k=\frac{\sqrt{13}-3}{2} k=\frac{-\sqrt{13}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.