Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2h^{2}-3h-18=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
h=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-18\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
h=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-18\right)}}{2\times 2}
-3 kvadratini chiqarish.
h=\frac{-\left(-3\right)±\sqrt{9-8\left(-18\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
h=\frac{-\left(-3\right)±\sqrt{9+144}}{2\times 2}
-8 ni -18 marotabaga ko'paytirish.
h=\frac{-\left(-3\right)±\sqrt{153}}{2\times 2}
9 ni 144 ga qo'shish.
h=\frac{-\left(-3\right)±3\sqrt{17}}{2\times 2}
153 ning kvadrat ildizini chiqarish.
h=\frac{3±3\sqrt{17}}{2\times 2}
-3 ning teskarisi 3 ga teng.
h=\frac{3±3\sqrt{17}}{4}
2 ni 2 marotabaga ko'paytirish.
h=\frac{3\sqrt{17}+3}{4}
h=\frac{3±3\sqrt{17}}{4} tenglamasini yeching, bunda ± musbat. 3 ni 3\sqrt{17} ga qo'shish.
h=\frac{3-3\sqrt{17}}{4}
h=\frac{3±3\sqrt{17}}{4} tenglamasini yeching, bunda ± manfiy. 3 dan 3\sqrt{17} ni ayirish.
2h^{2}-3h-18=2\left(h-\frac{3\sqrt{17}+3}{4}\right)\left(h-\frac{3-3\sqrt{17}}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{3+3\sqrt{17}}{4} ga va x_{2} uchun \frac{3-3\sqrt{17}}{4} ga bo‘ling.