Omil
\left(2d-11\right)\left(d+1\right)
Baholash
\left(2d-11\right)\left(d+1\right)
Baham ko'rish
Klipbordga nusxa olish
a+b=-9 ab=2\left(-11\right)=-22
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 2d^{2}+ad+bd-11 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-22 2,-11
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -22-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-22=-21 2-11=-9
Har bir juftlik yigʻindisini hisoblang.
a=-11 b=2
Yechim – -9 yigʻindisini beruvchi juftlik.
\left(2d^{2}-11d\right)+\left(2d-11\right)
2d^{2}-9d-11 ni \left(2d^{2}-11d\right)+\left(2d-11\right) sifatida qaytadan yozish.
d\left(2d-11\right)+2d-11
2d^{2}-11d ichida d ni ajrating.
\left(2d-11\right)\left(d+1\right)
Distributiv funktsiyasidan foydalangan holda 2d-11 umumiy terminini chiqaring.
2d^{2}-9d-11=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
d=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-11\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
d=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-11\right)}}{2\times 2}
-9 kvadratini chiqarish.
d=\frac{-\left(-9\right)±\sqrt{81-8\left(-11\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
d=\frac{-\left(-9\right)±\sqrt{81+88}}{2\times 2}
-8 ni -11 marotabaga ko'paytirish.
d=\frac{-\left(-9\right)±\sqrt{169}}{2\times 2}
81 ni 88 ga qo'shish.
d=\frac{-\left(-9\right)±13}{2\times 2}
169 ning kvadrat ildizini chiqarish.
d=\frac{9±13}{2\times 2}
-9 ning teskarisi 9 ga teng.
d=\frac{9±13}{4}
2 ni 2 marotabaga ko'paytirish.
d=\frac{22}{4}
d=\frac{9±13}{4} tenglamasini yeching, bunda ± musbat. 9 ni 13 ga qo'shish.
d=\frac{11}{2}
\frac{22}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
d=-\frac{4}{4}
d=\frac{9±13}{4} tenglamasini yeching, bunda ± manfiy. 9 dan 13 ni ayirish.
d=-1
-4 ni 4 ga bo'lish.
2d^{2}-9d-11=2\left(d-\frac{11}{2}\right)\left(d-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{11}{2} ga va x_{2} uchun -1 ga bo‘ling.
2d^{2}-9d-11=2\left(d-\frac{11}{2}\right)\left(d+1\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
2d^{2}-9d-11=2\times \frac{2d-11}{2}\left(d+1\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{11}{2} ni d dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
2d^{2}-9d-11=\left(2d-11\right)\left(d+1\right)
2 va 2 ichida eng katta umumiy 2 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}