Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2b^{2}+6b-1=2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
2b^{2}+6b-1-2=2-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
2b^{2}+6b-1-2=0
O‘zidan 2 ayirilsa 0 qoladi.
2b^{2}+6b-3=0
-1 dan 2 ni ayirish.
b=\frac{-6±\sqrt{6^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 6 ni b va -3 ni c bilan almashtiring.
b=\frac{-6±\sqrt{36-4\times 2\left(-3\right)}}{2\times 2}
6 kvadratini chiqarish.
b=\frac{-6±\sqrt{36-8\left(-3\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
b=\frac{-6±\sqrt{36+24}}{2\times 2}
-8 ni -3 marotabaga ko'paytirish.
b=\frac{-6±\sqrt{60}}{2\times 2}
36 ni 24 ga qo'shish.
b=\frac{-6±2\sqrt{15}}{2\times 2}
60 ning kvadrat ildizini chiqarish.
b=\frac{-6±2\sqrt{15}}{4}
2 ni 2 marotabaga ko'paytirish.
b=\frac{2\sqrt{15}-6}{4}
b=\frac{-6±2\sqrt{15}}{4} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{15} ga qo'shish.
b=\frac{\sqrt{15}-3}{2}
-6+2\sqrt{15} ni 4 ga bo'lish.
b=\frac{-2\sqrt{15}-6}{4}
b=\frac{-6±2\sqrt{15}}{4} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{15} ni ayirish.
b=\frac{-\sqrt{15}-3}{2}
-6-2\sqrt{15} ni 4 ga bo'lish.
b=\frac{\sqrt{15}-3}{2} b=\frac{-\sqrt{15}-3}{2}
Tenglama yechildi.
2b^{2}+6b-1=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2b^{2}+6b-1-\left(-1\right)=2-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
2b^{2}+6b=2-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
2b^{2}+6b=3
2 dan -1 ni ayirish.
\frac{2b^{2}+6b}{2}=\frac{3}{2}
Ikki tarafini 2 ga bo‘ling.
b^{2}+\frac{6}{2}b=\frac{3}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
b^{2}+3b=\frac{3}{2}
6 ni 2 ga bo'lish.
b^{2}+3b+\left(\frac{3}{2}\right)^{2}=\frac{3}{2}+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}+3b+\frac{9}{4}=\frac{3}{2}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
b^{2}+3b+\frac{9}{4}=\frac{15}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(b+\frac{3}{2}\right)^{2}=\frac{15}{4}
b^{2}+3b+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b+\frac{3}{2}\right)^{2}}=\sqrt{\frac{15}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b+\frac{3}{2}=\frac{\sqrt{15}}{2} b+\frac{3}{2}=-\frac{\sqrt{15}}{2}
Qisqartirish.
b=\frac{\sqrt{15}-3}{2} b=\frac{-\sqrt{15}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.