Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2a^{2}-a-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-2\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -1 ni b va -2 ni c bilan almashtiring.
a=\frac{-\left(-1\right)±\sqrt{1-8\left(-2\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
a=\frac{-\left(-1\right)±\sqrt{1+16}}{2\times 2}
-8 ni -2 marotabaga ko'paytirish.
a=\frac{-\left(-1\right)±\sqrt{17}}{2\times 2}
1 ni 16 ga qo'shish.
a=\frac{1±\sqrt{17}}{2\times 2}
-1 ning teskarisi 1 ga teng.
a=\frac{1±\sqrt{17}}{4}
2 ni 2 marotabaga ko'paytirish.
a=\frac{\sqrt{17}+1}{4}
a=\frac{1±\sqrt{17}}{4} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{17} ga qo'shish.
a=\frac{1-\sqrt{17}}{4}
a=\frac{1±\sqrt{17}}{4} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{17} ni ayirish.
a=\frac{\sqrt{17}+1}{4} a=\frac{1-\sqrt{17}}{4}
Tenglama yechildi.
2a^{2}-a-2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2a^{2}-a-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
2a^{2}-a=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
2a^{2}-a=2
0 dan -2 ni ayirish.
\frac{2a^{2}-a}{2}=\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
a^{2}-\frac{1}{2}a=\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
a^{2}-\frac{1}{2}a=1
2 ni 2 ga bo'lish.
a^{2}-\frac{1}{2}a+\left(-\frac{1}{4}\right)^{2}=1+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-\frac{1}{2}a+\frac{1}{16}=1+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
a^{2}-\frac{1}{2}a+\frac{1}{16}=\frac{17}{16}
1 ni \frac{1}{16} ga qo'shish.
\left(a-\frac{1}{4}\right)^{2}=\frac{17}{16}
a^{2}-\frac{1}{2}a+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-\frac{1}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-\frac{1}{4}=\frac{\sqrt{17}}{4} a-\frac{1}{4}=-\frac{\sqrt{17}}{4}
Qisqartirish.
a=\frac{\sqrt{17}+1}{4} a=\frac{1-\sqrt{17}}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.