a uchun yechish
a=\frac{\sqrt{26}}{2}+2\approx 4,549509757
a=-\frac{\sqrt{26}}{2}+2\approx -0,549509757
Baham ko'rish
Klipbordga nusxa olish
2a^{2}-8a-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -8 ni b va -5 ni c bilan almashtiring.
a=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-5\right)}}{2\times 2}
-8 kvadratini chiqarish.
a=\frac{-\left(-8\right)±\sqrt{64-8\left(-5\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
a=\frac{-\left(-8\right)±\sqrt{64+40}}{2\times 2}
-8 ni -5 marotabaga ko'paytirish.
a=\frac{-\left(-8\right)±\sqrt{104}}{2\times 2}
64 ni 40 ga qo'shish.
a=\frac{-\left(-8\right)±2\sqrt{26}}{2\times 2}
104 ning kvadrat ildizini chiqarish.
a=\frac{8±2\sqrt{26}}{2\times 2}
-8 ning teskarisi 8 ga teng.
a=\frac{8±2\sqrt{26}}{4}
2 ni 2 marotabaga ko'paytirish.
a=\frac{2\sqrt{26}+8}{4}
a=\frac{8±2\sqrt{26}}{4} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{26} ga qo'shish.
a=\frac{\sqrt{26}}{2}+2
8+2\sqrt{26} ni 4 ga bo'lish.
a=\frac{8-2\sqrt{26}}{4}
a=\frac{8±2\sqrt{26}}{4} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{26} ni ayirish.
a=-\frac{\sqrt{26}}{2}+2
8-2\sqrt{26} ni 4 ga bo'lish.
a=\frac{\sqrt{26}}{2}+2 a=-\frac{\sqrt{26}}{2}+2
Tenglama yechildi.
2a^{2}-8a-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2a^{2}-8a-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
2a^{2}-8a=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
2a^{2}-8a=5
0 dan -5 ni ayirish.
\frac{2a^{2}-8a}{2}=\frac{5}{2}
Ikki tarafini 2 ga bo‘ling.
a^{2}+\left(-\frac{8}{2}\right)a=\frac{5}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
a^{2}-4a=\frac{5}{2}
-8 ni 2 ga bo'lish.
a^{2}-4a+\left(-2\right)^{2}=\frac{5}{2}+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-4a+4=\frac{5}{2}+4
-2 kvadratini chiqarish.
a^{2}-4a+4=\frac{13}{2}
\frac{5}{2} ni 4 ga qo'shish.
\left(a-2\right)^{2}=\frac{13}{2}
a^{2}-4a+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-2\right)^{2}}=\sqrt{\frac{13}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-2=\frac{\sqrt{26}}{2} a-2=-\frac{\sqrt{26}}{2}
Qisqartirish.
a=\frac{\sqrt{26}}{2}+2 a=-\frac{\sqrt{26}}{2}+2
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}