Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2a^{2}-21a+48=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 2\times 48}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -21 ni b va 48 ni c bilan almashtiring.
a=\frac{-\left(-21\right)±\sqrt{441-4\times 2\times 48}}{2\times 2}
-21 kvadratini chiqarish.
a=\frac{-\left(-21\right)±\sqrt{441-8\times 48}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
a=\frac{-\left(-21\right)±\sqrt{441-384}}{2\times 2}
-8 ni 48 marotabaga ko'paytirish.
a=\frac{-\left(-21\right)±\sqrt{57}}{2\times 2}
441 ni -384 ga qo'shish.
a=\frac{21±\sqrt{57}}{2\times 2}
-21 ning teskarisi 21 ga teng.
a=\frac{21±\sqrt{57}}{4}
2 ni 2 marotabaga ko'paytirish.
a=\frac{\sqrt{57}+21}{4}
a=\frac{21±\sqrt{57}}{4} tenglamasini yeching, bunda ± musbat. 21 ni \sqrt{57} ga qo'shish.
a=\frac{21-\sqrt{57}}{4}
a=\frac{21±\sqrt{57}}{4} tenglamasini yeching, bunda ± manfiy. 21 dan \sqrt{57} ni ayirish.
a=\frac{\sqrt{57}+21}{4} a=\frac{21-\sqrt{57}}{4}
Tenglama yechildi.
2a^{2}-21a+48=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2a^{2}-21a+48-48=-48
Tenglamaning ikkala tarafidan 48 ni ayirish.
2a^{2}-21a=-48
O‘zidan 48 ayirilsa 0 qoladi.
\frac{2a^{2}-21a}{2}=-\frac{48}{2}
Ikki tarafini 2 ga bo‘ling.
a^{2}-\frac{21}{2}a=-\frac{48}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
a^{2}-\frac{21}{2}a=-24
-48 ni 2 ga bo'lish.
a^{2}-\frac{21}{2}a+\left(-\frac{21}{4}\right)^{2}=-24+\left(-\frac{21}{4}\right)^{2}
-\frac{21}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{21}{4} olish uchun. Keyin, -\frac{21}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-\frac{21}{2}a+\frac{441}{16}=-24+\frac{441}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{4} kvadratini chiqarish.
a^{2}-\frac{21}{2}a+\frac{441}{16}=\frac{57}{16}
-24 ni \frac{441}{16} ga qo'shish.
\left(a-\frac{21}{4}\right)^{2}=\frac{57}{16}
a^{2}-\frac{21}{2}a+\frac{441}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-\frac{21}{4}\right)^{2}}=\sqrt{\frac{57}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-\frac{21}{4}=\frac{\sqrt{57}}{4} a-\frac{21}{4}=-\frac{\sqrt{57}}{4}
Qisqartirish.
a=\frac{\sqrt{57}+21}{4} a=\frac{21-\sqrt{57}}{4}
\frac{21}{4} ni tenglamaning ikkala tarafiga qo'shish.