x uchun yechish
x=\frac{1}{2}=0,5
x=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(x^{2}-2x+1\right)=1-x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-4x+2=1-x
2 ga x^{2}-2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-4x+2-1=-x
Ikkala tarafdan 1 ni ayirish.
2x^{2}-4x+1=-x
1 olish uchun 2 dan 1 ni ayirish.
2x^{2}-4x+1+x=0
x ni ikki tarafga qo’shing.
2x^{2}-3x+1=0
-3x ni olish uchun -4x va x ni birlashtirish.
a+b=-3 ab=2\times 1=2
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 2x^{2}+ax+bx+1 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-2 b=-1
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. Faqat bundan juftlik tizim yechimidir.
\left(2x^{2}-2x\right)+\left(-x+1\right)
2x^{2}-3x+1 ni \left(2x^{2}-2x\right)+\left(-x+1\right) sifatida qaytadan yozish.
2x\left(x-1\right)-\left(x-1\right)
Birinchi guruhda 2x ni va ikkinchi guruhda -1 ni faktordan chiqaring.
\left(x-1\right)\left(2x-1\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
x=1 x=\frac{1}{2}
Tenglamani yechish uchun x-1=0 va 2x-1=0 ni yeching.
2\left(x^{2}-2x+1\right)=1-x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-4x+2=1-x
2 ga x^{2}-2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-4x+2-1=-x
Ikkala tarafdan 1 ni ayirish.
2x^{2}-4x+1=-x
1 olish uchun 2 dan 1 ni ayirish.
2x^{2}-4x+1+x=0
x ni ikki tarafga qo’shing.
2x^{2}-3x+1=0
-3x ni olish uchun -4x va x ni birlashtirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -3 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2\times 2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{1}}{2\times 2}
9 ni -8 ga qo'shish.
x=\frac{-\left(-3\right)±1}{2\times 2}
1 ning kvadrat ildizini chiqarish.
x=\frac{3±1}{2\times 2}
-3 ning teskarisi 3 ga teng.
x=\frac{3±1}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4}{4}
x=\frac{3±1}{4} tenglamasini yeching, bunda ± musbat. 3 ni 1 ga qo'shish.
x=1
4 ni 4 ga bo'lish.
x=\frac{2}{4}
x=\frac{3±1}{4} tenglamasini yeching, bunda ± manfiy. 3 dan 1 ni ayirish.
x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=\frac{1}{2}
Tenglama yechildi.
2\left(x^{2}-2x+1\right)=1-x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-4x+2=1-x
2 ga x^{2}-2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-4x+2+x=1
x ni ikki tarafga qo’shing.
2x^{2}-3x+2=1
-3x ni olish uchun -4x va x ni birlashtirish.
2x^{2}-3x=1-2
Ikkala tarafdan 2 ni ayirish.
2x^{2}-3x=-1
-1 olish uchun 1 dan 2 ni ayirish.
\frac{2x^{2}-3x}{2}=-\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{4} olish uchun. Keyin, -\frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{4} kvadratini chiqarish.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{2} ni \frac{9}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
Qisqartirish.
x=1 x=\frac{1}{2}
\frac{3}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}