x uchun yechish
x=3\sqrt{2}\approx 4,242640687
x=-3\sqrt{2}\approx -4,242640687
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-16+5=25
2 ga x^{2}-8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-11=25
-11 olish uchun -16 va 5'ni qo'shing.
2x^{2}=25+11
11 ni ikki tarafga qo’shing.
2x^{2}=36
36 olish uchun 25 va 11'ni qo'shing.
x^{2}=\frac{36}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=18
18 ni olish uchun 36 ni 2 ga bo‘ling.
x=3\sqrt{2} x=-3\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2x^{2}-16+5=25
2 ga x^{2}-8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-11=25
-11 olish uchun -16 va 5'ni qo'shing.
2x^{2}-11-25=0
Ikkala tarafdan 25 ni ayirish.
2x^{2}-36=0
-36 olish uchun -11 dan 25 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-36\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -36 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-36\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-36\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{288}}{2\times 2}
-8 ni -36 marotabaga ko'paytirish.
x=\frac{0±12\sqrt{2}}{2\times 2}
288 ning kvadrat ildizini chiqarish.
x=\frac{0±12\sqrt{2}}{4}
2 ni 2 marotabaga ko'paytirish.
x=3\sqrt{2}
x=\frac{0±12\sqrt{2}}{4} tenglamasini yeching, bunda ± musbat.
x=-3\sqrt{2}
x=\frac{0±12\sqrt{2}}{4} tenglamasini yeching, bunda ± manfiy.
x=3\sqrt{2} x=-3\sqrt{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}