x uchun yechish
x=-\sqrt{2}i\approx -0-1,414213562i
x=\sqrt{2}i\approx 1,414213562i
y uchun yechish
y\in \mathrm{C}
x=-\sqrt{2}i\text{ or }x=\sqrt{2}i
Viktorina
Complex Number
5xshash muammolar:
2 ( 2 \cdot 1 - 2 ) ( x ^ { 2 } + y ) = ( x ^ { 2 } + 2 ) ( 2 - 1 )
Baham ko'rish
Klipbordga nusxa olish
2\left(2-2\right)\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
2 hosil qilish uchun 2 va 1 ni ko'paytirish.
2\times 0\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
0 olish uchun 2 dan 2 ni ayirish.
0\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
0 hosil qilish uchun 2 va 0 ni ko'paytirish.
0=\left(x^{2}+2\right)\left(2-1\right)
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
0=\left(x^{2}+2\right)\times 1
1 olish uchun 2 dan 1 ni ayirish.
0=x^{2}+2
x^{2}+2 ga 1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+2=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x=\sqrt{2}i x=-\sqrt{2}i
Tenglama yechildi.
2\left(2-2\right)\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
2 hosil qilish uchun 2 va 1 ni ko'paytirish.
2\times 0\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
0 olish uchun 2 dan 2 ni ayirish.
0\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
0 hosil qilish uchun 2 va 0 ni ko'paytirish.
0=\left(x^{2}+2\right)\left(2-1\right)
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
0=\left(x^{2}+2\right)\times 1
1 olish uchun 2 dan 1 ni ayirish.
0=x^{2}+2
x^{2}+2 ga 1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+2=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{0±\sqrt{0^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va 2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{2}i}{2}
-8 ning kvadrat ildizini chiqarish.
x=\sqrt{2}i
x=\frac{0±2\sqrt{2}i}{2} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{2}i
x=\frac{0±2\sqrt{2}i}{2} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{2}i x=-\sqrt{2}i
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}