y uchun yechish
y=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\times \frac{7}{3}+2\left(-\frac{5}{3}\right)y+7y=12
2 ga \frac{7}{3}-\frac{5}{3}y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2\times 7}{3}+2\left(-\frac{5}{3}\right)y+7y=12
2\times \frac{7}{3} ni yagona kasrga aylantiring.
\frac{14}{3}+2\left(-\frac{5}{3}\right)y+7y=12
14 hosil qilish uchun 2 va 7 ni ko'paytirish.
\frac{14}{3}+\frac{2\left(-5\right)}{3}y+7y=12
2\left(-\frac{5}{3}\right) ni yagona kasrga aylantiring.
\frac{14}{3}+\frac{-10}{3}y+7y=12
-10 hosil qilish uchun 2 va -5 ni ko'paytirish.
\frac{14}{3}-\frac{10}{3}y+7y=12
\frac{-10}{3} kasri manfiy belgini olib tashlash bilan -\frac{10}{3} sifatida qayta yozilishi mumkin.
\frac{14}{3}+\frac{11}{3}y=12
\frac{11}{3}y ni olish uchun -\frac{10}{3}y va 7y ni birlashtirish.
\frac{11}{3}y=12-\frac{14}{3}
Ikkala tarafdan \frac{14}{3} ni ayirish.
\frac{11}{3}y=\frac{36}{3}-\frac{14}{3}
12 ni \frac{36}{3} kasrga o‘giring.
\frac{11}{3}y=\frac{36-14}{3}
\frac{36}{3} va \frac{14}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{11}{3}y=\frac{22}{3}
22 olish uchun 36 dan 14 ni ayirish.
y=\frac{22}{3}\times \frac{3}{11}
Ikki tarafini \frac{3}{11} va teskari kasri \frac{11}{3} ga ko‘paytiring.
y=\frac{22\times 3}{3\times 11}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{22}{3} ni \frac{3}{11} ga ko‘paytiring.
y=\frac{22}{11}
Surat va maxrajdagi ikkala 3 ni qisqartiring.
y=2
2 ni olish uchun 22 ni 11 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}