x uchun yechish
x\leq \frac{5}{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\times \frac{3}{2}x+2\left(-\frac{21}{10}\right)+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
2 ga \frac{3}{2}x-\frac{21}{10} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+2\left(-\frac{21}{10}\right)+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
2 va 2 ni qisqartiring.
3x+\frac{2\left(-21\right)}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
2\left(-\frac{21}{10}\right) ni yagona kasrga aylantiring.
3x+\frac{-42}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
-42 hosil qilish uchun 2 va -21 ni ko'paytirish.
3x-\frac{21}{5}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
\frac{-42}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
3x-\frac{42}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
5 va 10 ning eng kichik umumiy karralisi 10 ga teng. -\frac{21}{5} va \frac{17}{10} ni 10 maxraj bilan kasrlarga aylantirib oling.
3x+\frac{-42+17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
-\frac{42}{10} va \frac{17}{10} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
3x+\frac{-25}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
-25 olish uchun -42 va 17'ni qo'shing.
3x-\frac{5}{2}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
\frac{-25}{10} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
3x-\frac{5}{2}\geq 2\times \frac{12}{5}x+2\left(-\frac{7}{2}\right)
2 ga \frac{12}{5}x-\frac{7}{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-\frac{5}{2}\geq \frac{2\times 12}{5}x+2\left(-\frac{7}{2}\right)
2\times \frac{12}{5} ni yagona kasrga aylantiring.
3x-\frac{5}{2}\geq \frac{24}{5}x+2\left(-\frac{7}{2}\right)
24 hosil qilish uchun 2 va 12 ni ko'paytirish.
3x-\frac{5}{2}\geq \frac{24}{5}x-7
2 va 2 ni qisqartiring.
3x-\frac{5}{2}-\frac{24}{5}x\geq -7
Ikkala tarafdan \frac{24}{5}x ni ayirish.
-\frac{9}{5}x-\frac{5}{2}\geq -7
-\frac{9}{5}x ni olish uchun 3x va -\frac{24}{5}x ni birlashtirish.
-\frac{9}{5}x\geq -7+\frac{5}{2}
\frac{5}{2} ni ikki tarafga qo’shing.
-\frac{9}{5}x\geq -\frac{14}{2}+\frac{5}{2}
-7 ni -\frac{14}{2} kasrga o‘giring.
-\frac{9}{5}x\geq \frac{-14+5}{2}
-\frac{14}{2} va \frac{5}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
-\frac{9}{5}x\geq -\frac{9}{2}
-9 olish uchun -14 va 5'ni qo'shing.
x\leq -\frac{9}{2}\left(-\frac{5}{9}\right)
Ikki tarafini -\frac{5}{9} va teskari kasri -\frac{9}{5} ga ko‘paytiring. -\frac{9}{5} manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
x\leq \frac{-9\left(-5\right)}{2\times 9}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{9}{2} ni -\frac{5}{9} ga ko‘paytiring.
x\leq \frac{45}{18}
\frac{-9\left(-5\right)}{2\times 9} kasridagi ko‘paytirishlarni bajaring.
x\leq \frac{5}{2}
\frac{45}{18} ulushini 9 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}