Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-x-4-2=0
Ikkala tarafdan 2 ni ayirish.
2x^{2}-x-6=0
-6 olish uchun -4 dan 2 ni ayirish.
a+b=-1 ab=2\left(-6\right)=-12
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 2x^{2}+ax+bx-6 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-12 2,-6 3,-4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-12=-11 2-6=-4 3-4=-1
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=3
Yechim – -1 yigʻindisini beruvchi juftlik.
\left(2x^{2}-4x\right)+\left(3x-6\right)
2x^{2}-x-6 ni \left(2x^{2}-4x\right)+\left(3x-6\right) sifatida qaytadan yozish.
2x\left(x-2\right)+3\left(x-2\right)
Birinchi guruhda 2x ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(x-2\right)\left(2x+3\right)
Distributiv funktsiyasidan foydalangan holda x-2 umumiy terminini chiqaring.
x=2 x=-\frac{3}{2}
Tenglamani yechish uchun x-2=0 va 2x+3=0 ni yeching.
2x^{2}-x-4=2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
2x^{2}-x-4-2=2-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
2x^{2}-x-4-2=0
O‘zidan 2 ayirilsa 0 qoladi.
2x^{2}-x-6=0
-4 dan 2 ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -1 ni b va -6 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
-8 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
1 ni 48 ga qo'shish.
x=\frac{-\left(-1\right)±7}{2\times 2}
49 ning kvadrat ildizini chiqarish.
x=\frac{1±7}{2\times 2}
-1 ning teskarisi 1 ga teng.
x=\frac{1±7}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{8}{4}
x=\frac{1±7}{4} tenglamasini yeching, bunda ± musbat. 1 ni 7 ga qo'shish.
x=2
8 ni 4 ga bo'lish.
x=-\frac{6}{4}
x=\frac{1±7}{4} tenglamasini yeching, bunda ± manfiy. 1 dan 7 ni ayirish.
x=-\frac{3}{2}
\frac{-6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=2 x=-\frac{3}{2}
Tenglama yechildi.
2x^{2}-x-4=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-x-4-\left(-4\right)=2-\left(-4\right)
4 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}-x=2-\left(-4\right)
O‘zidan -4 ayirilsa 0 qoladi.
2x^{2}-x=6
2 dan -4 ni ayirish.
\frac{2x^{2}-x}{2}=\frac{6}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{1}{2}x=\frac{6}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=3
6 ni 2 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
3 ni \frac{1}{16} ga qo'shish.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
Qisqartirish.
x=2 x=-\frac{3}{2}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.