x uchun yechish
x = \frac{15 \sqrt{41} + 45}{2} \approx 70,523431781
x=\frac{45-15\sqrt{41}}{2}\approx -25,523431781
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-90x-3600=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 2\left(-3600\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -90 ni b va -3600 ni c bilan almashtiring.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 2\left(-3600\right)}}{2\times 2}
-90 kvadratini chiqarish.
x=\frac{-\left(-90\right)±\sqrt{8100-8\left(-3600\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{8100+28800}}{2\times 2}
-8 ni -3600 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{36900}}{2\times 2}
8100 ni 28800 ga qo'shish.
x=\frac{-\left(-90\right)±30\sqrt{41}}{2\times 2}
36900 ning kvadrat ildizini chiqarish.
x=\frac{90±30\sqrt{41}}{2\times 2}
-90 ning teskarisi 90 ga teng.
x=\frac{90±30\sqrt{41}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{30\sqrt{41}+90}{4}
x=\frac{90±30\sqrt{41}}{4} tenglamasini yeching, bunda ± musbat. 90 ni 30\sqrt{41} ga qo'shish.
x=\frac{15\sqrt{41}+45}{2}
90+30\sqrt{41} ni 4 ga bo'lish.
x=\frac{90-30\sqrt{41}}{4}
x=\frac{90±30\sqrt{41}}{4} tenglamasini yeching, bunda ± manfiy. 90 dan 30\sqrt{41} ni ayirish.
x=\frac{45-15\sqrt{41}}{2}
90-30\sqrt{41} ni 4 ga bo'lish.
x=\frac{15\sqrt{41}+45}{2} x=\frac{45-15\sqrt{41}}{2}
Tenglama yechildi.
2x^{2}-90x-3600=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}-90x-3600-\left(-3600\right)=-\left(-3600\right)
3600 ni tenglamaning ikkala tarafiga qo'shish.
2x^{2}-90x=-\left(-3600\right)
O‘zidan -3600 ayirilsa 0 qoladi.
2x^{2}-90x=3600
0 dan -3600 ni ayirish.
\frac{2x^{2}-90x}{2}=\frac{3600}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{90}{2}\right)x=\frac{3600}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-45x=\frac{3600}{2}
-90 ni 2 ga bo'lish.
x^{2}-45x=1800
3600 ni 2 ga bo'lish.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=1800+\left(-\frac{45}{2}\right)^{2}
-45 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{45}{2} olish uchun. Keyin, -\frac{45}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-45x+\frac{2025}{4}=1800+\frac{2025}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{45}{2} kvadratini chiqarish.
x^{2}-45x+\frac{2025}{4}=\frac{9225}{4}
1800 ni \frac{2025}{4} ga qo'shish.
\left(x-\frac{45}{2}\right)^{2}=\frac{9225}{4}
x^{2}-45x+\frac{2025}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{9225}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{45}{2}=\frac{15\sqrt{41}}{2} x-\frac{45}{2}=-\frac{15\sqrt{41}}{2}
Qisqartirish.
x=\frac{15\sqrt{41}+45}{2} x=\frac{45-15\sqrt{41}}{2}
\frac{45}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}