Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-8x+4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 4}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 4}}{2\times 2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 4}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-32}}{2\times 2}
-8 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{32}}{2\times 2}
64 ni -32 ga qo'shish.
x=\frac{-\left(-8\right)±4\sqrt{2}}{2\times 2}
32 ning kvadrat ildizini chiqarish.
x=\frac{8±4\sqrt{2}}{2\times 2}
-8 ning teskarisi 8 ga teng.
x=\frac{8±4\sqrt{2}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4\sqrt{2}+8}{4}
x=\frac{8±4\sqrt{2}}{4} tenglamasini yeching, bunda ± musbat. 8 ni 4\sqrt{2} ga qo'shish.
x=\sqrt{2}+2
8+4\sqrt{2} ni 4 ga bo'lish.
x=\frac{8-4\sqrt{2}}{4}
x=\frac{8±4\sqrt{2}}{4} tenglamasini yeching, bunda ± manfiy. 8 dan 4\sqrt{2} ni ayirish.
x=2-\sqrt{2}
8-4\sqrt{2} ni 4 ga bo'lish.
2x^{2}-8x+4=2\left(x-\left(\sqrt{2}+2\right)\right)\left(x-\left(2-\sqrt{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 2+\sqrt{2} ga va x_{2} uchun 2-\sqrt{2} ga bo‘ling.